Asymptotics of Studentized U-type processes for
changepoint problems

Miklés Csorgd

Carleton University, Ottawa, Canada

Barbara Szyszkowicz
Carleton University, Ottawa, Canada

Qiying Wang
University of Sydney, Australia

ABSTRACT

This paper investigates weighted approximations for studentized U-
statistics type processes, both with symmetric and antisymmetric
kernels, only under the assumption that the distribution of the
projection variate is in the domain of attraction of the normal law.
The results can be used for testing the null assumption of having
a random sample versus the alternative that there is a change in
distribution in the sequence.
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1 Introduction and main results: the case of sym-
metric kernels

Let X, X1, Xo, ... be a sequence of non-degenerate i.i.d. random variables with distribution

function F'. Suppose we are interested in testing the null hypothesis:
Hy: X, 1<1i<mn, have the same distribution,
against the one change alternative:

Hy:  thereis an integer k, 1 < k <n, such that
PXy<t)y=--=P(Xp <t), PXps1 <t)=---=P(X, <t)
for all t and P(Xy < tg) # P(Xys1 < tg) for some t.

Testing for this kind of a change in distribution has been studied considerably in
the literature by using parametric as well as non-parametric methods. One of the non-
parametric methods was proposed by Csorg6é and Horvéath (1988a, b), who used function-
als of a U— statistics type (U-type, from now on) process to test Hy against H,. Let
h(z,y) be a measurable real valued symmetric function. The U—type process of Csorgd

and Horvath (1988a, b) is defined by
Un(t) = Zjgni1yg — n°t(L— )0,  0<t <1,

where § = Eh(X;, X5), and

While Z,, itself is not a U-statistic, it can be written as the sums of three U— statistics
[cf. Csorgé and Horvath (1988a, b, 1997)]. Typical choices of symmetric kernel h are
zy, (z — y)?/2 (the sample variance), |z — y| (Gini’s mean difference), and sign(z + y)
(Wilcoxon’s one-sample statistic).

Throughout the paper, we write g(t) = E (h(X,t) — 0), 0> = Fg?(X;) and, for later

use, we define a Gaussian process [' by
F)=1-t)W(@) +t W) -W(@)], 0<t<l, (1)
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where {W(t),0 < t < oo} is a standard Wiener process. Furthermore, let @ be the
class of positive functions ¢ on (0, 1), i.e., infs<;<1-5¢(t) > 0 for 0 < § < 1, which are
nondecreasing in a neighbourhood of zero and nonincreasing in a neighbourhood of one,

and let

1- 1 c
[(q’c):/o+ t(l—t)eXp(_t(f—Ez)ﬁ))dt 0<c<oo.

In terms of these notations, Csérgé and Horvéath (1988a, b), Szyszkowicz (1991, 1992)
established the following result [cf. Theorem 2.4.2 in Csoérgé and Horvath (1997)].

Theorem A. Assume Hy, 0 < 0® < oo and EJh(X1,X3)]? < oo. Then, on an
appropriate probability space for X, Xy, Xs, -+, we can define a sequence of Gaussian

processes {I',(t),0 <t < 1} such that
{T.(1),0<t<1}E2{r@),0<t<1}, (2)
for eachn > 1, and as n — oo,
sup |n 207U, (1) = Tu(t) | /a(t) = op(1). (3)

0<t<1

if and only if I(q,c) < oo for any ¢ > 0.

This theorem provides a basic tool for investigating the asymptotic behaviour of many
test statistics via corresponding functionals of I'(.)/q(.) for appropriate choices of the
kernel h(z,y). This, in turn, motivates the establishment of our first result, in which
we reduce the moment conditions related to the kernel h(z,y). Our first result reads as

follows.

Theorem 1 Assume Hy, 0 < 0% < oo and E|h(X,, Xs)|*® < co. Then, on an appro-
priate probability space for X, X1, Xs,- -+, we can define a sequence of Gaussian processes
{T'n(t),0 <t < 1} such that (2) holds true, and if I(q,c) < oo for some ¢ > 0, then as
n — oo,

sup ‘n 326710, (t ‘/q = op(1). (4)

1/n<t<(n-1)/

In addition to reducing the moment conditions required in Theorem A, the result (4)
of Theorem 1 generalizes (3) as well. Namely, as a direct consequence of Theorem 1, we

have the following corollary.



Corollary 1 Assume Hy, 0 < 0% < oo and E|h(X,, Xo)|[*? < 0. If ¢ € Q, then
(a) we still have the conclusion of Theorem A, i.e., (3) holds true if and only if
I(gq,c) < o0 for any ¢ > 0;

(b) as n — oo,

n" oL () Ja(t) = T(t) /q(t) (5)

on (D[0,1], p), where p is the sup-norm metric for functions in D|0,1], if and only if
I(gq,c) < o0 for any ¢ > 0;

(c) as n — oo,

n 0™ sup (U0 /a(t) —p swp D(O)|/at) (®

0<t<1

if and only if I(q,c) < oo for some ¢ > 0.

When 6 and o are known, large values of the statistic on the left hand sides in (6), for
example, indicate a change in the distribution, and hence, based on Corollary 1, rejection
of Hy can be quantified accordingly. Otherwise 6 and ¢ need to be estimated. A natural

estimate of 0 is
1

f=—" X, X)),
n(n —1) 1<;<n J
and that of o2 is
) 12 12 2
6° == (90) - =3 9(X)))"
j=1 =1

According to the definition of g(x), g(Xj;) still depends on the usually unknown distribu-
tion function F' of X, and hence it then can not be computed explicitly. Since we have
that g(z) +60 = [ h(x,y)dF(y), we can replace F' by the empirical distribution function
F, of X1, X5, ..., X,, under Hy. Consequently, we may for example estimate o2 by
. 1 & 1 & 1 2
07 = o3 (g LAl X)) - > h(X X))
j=1 i=1

n—1% n(n—l)lS#an
i

We note that this estimate is in fact the jackknife estimator of Var(f). Now we may

introduce a studentized U-type process as follows:

A

Un(t) = n72(6) " (Zjminyg —n*t(1—1)8),  0<t<1.

This process does not depend on the unknown parameters # and ¢ and we now state the

following main result of this paper.



Theorem 2 Let ¢ € Q. Assume Hy, E|h(X1, X2)]?® < oo and that g(X,) is in the
domain of attraction of the normal law. Then, on an appropriate probability space for
X, X1, Xo, -+, we can define a sequence of Gaussian processes {I',(t),0 < t < 1} such
that (2) holds true and, as n — oo,

sup
0<t<1

Un(t) = Tu(t) | fa(t) = op(1), (7)

if and only if I(q,c) < oo for any ¢ > 0. Consequently, as n — oo,

Ua(t)/q(t) = T(t) [q(t), on (D[0,1],p) (8)

if and only if I(q,c) < oo for any ¢ > 0. Furthermore we also have

sup (U, ()l/a(t) —p sup |(0)/alt) ©

0<t<1

if and only if I(q,c) < oo for some ¢ > 0.

Remark 1. It is interesting and also of interest to note that the class of the weight
functions in (9) is bigger than that in (8) [also compare (6) with (5)]. Such a phenomenon
was first noticed and proved for weighted empirical and quantile processes by Csorgd,
Csorgd, Horvath and Mason [CsCsHM] (1986) and then by Csorgé and Horvath (1988b)
for partial sums on assuming F|X|” < oo for some v > 2. For more details along these
lines, we refer to Szyszkowicz (1991, 1996, 1997), and to Csorgd, Norvaisa and Szyszkowicz
(1999).

Remark 2. The condition that 0 < 02 = Eg¢*(X;) < oo is the so-called non-
degenerate case when studying U— statistics. In Theorem 1 it is a necessary condition,
while assuming E|h(X, X3)|*? < oo is close to being necessary, on account of the central
limit theorem for U-statistics (see Borovskikh (2002), for example). Theorem 2 puts a
totally new countenance on the classical theory of weak convergence for standardized U-
type process as in Theorem 1 [see also Theorem A, Section 2.2.4 of Csérgé and Horvath
(1997), Gombay and Horvéth (1995, 2002)] in that here we derive results assuming only

g(X1) being in the domain of attraction of the normal law.

This paper is organized as follows. In the next section we provide the proofs of main

results. Then, in Section 3, we investigate the asymptotic behaviour of the U—type



process U, (.) when it is based on kernels that are antisymmetric, i.e., h(z,y) in such that
h(z,y) = —h(y, z). Throughout the paper A, Ay, ... will be used to denote the constants

which may be different at its each appearance.

2 Proofs of main results

We need some preliminaries to proving our main theorems. The following lemma, which

is of independent interest, constitutes the key step.
Lemma 1 Let ¢(x,y) be a measurable real valued function for which we have
Elp(X1, Xo) | Xi] = E[(X1,X5) | Xo] =0

and E|(X,, X5)|Y? < oo. Then, as n — oo,

1 B k n
~ dnax KVENTONT (G, X)) = Op(D), (10)
=1 j=k+1
1 k n
— nax |30 3 (XL X))| = op(1). (1)
== i=1 j=k+1

Proof. We first prove (10). Let ¢*(X;, X;) = (X, Xj) L y<irz — E0( Xy, X5) Ly <ior2),

1 B k n
E1§r}f?§—1k 1/2"21.%1;&()(24,)(]-)’ < ILi(n) + LIy(n) + I3(n), (12)
1= 1=
where
1 1/2 k k
Lin) = — max k ;gw (X3, X5)|,
j=1
1 1/2 kE n
I(n) = — max k ;;w (X3, X5)|,
T G
1 k n
) = — max K303 (X0 Xp) - 0T X)) + g7 (X) + 97(X)]
- = i=1 j=k+1

We next prove I;(n) = Op(1) for t = 1,2,3 and then (10) follows accordingly.



First consider t = 1. Write ¥; = /2] ¢**(X;, X;). It is readily seen that

=2

Z’L 3EY2 < A ZZ Xl,XQ)IW)KZSp]

S A ZEwQ Xl,XQ)I(k 13/2<W)‘<k3/2 Z’l
k=1

< AB[Y(Xy, Xo)|[*? < 0.

This, together with the Kronecker lemma, implies that k=3/2 Zle Y; — 0, a.s., and hence
I(n) = Op(1), since I;(n) < 2 maxi<p<n1 k32| X0, Yil.

Secondly we prove Ir(n) = Op(1). By noting that, for any a; and k > 1, 1 327 a; =
be — 1 307 b;, where b; = Y°i_ a,/t, it follows that

1 IR 2 k1 5
I(n) < ngr;??f_lk ‘;;w (Xi’Xj)‘ = nl/2 1<k<n 1‘2? ; (X5, X, ‘
j#i J#i

Therefore, it only needs to be shown that, uniformly in n > 1,
1 [o¢] n o
i= j=
i

This follows from a similar argument to that used in the proof for Ir(n) = Op(1). Indeed,

3

for all n > 1, we have
(Z (X0, X, ))2}1/2

1 o n e o
TpE‘Z;Zw (XivXj)‘ nl/z[z
= S

> 1 1/2
A (Zl 'L'_QEw2(X1’ X2)I(|w|§i3/2))

< A(ER(Xy, Xo)| Y)Y < o0,

IA

1
02

IA

Finally we prove I3(n) = Op(1). Noting ¢*(X;) = E(¥(Xi, Xj)(jy=i2)|X;) and
recalling F1 (X7, Xo) = 0, it is readily seen that

1
Ln) < - ke sz[w X, X) gz + B0, X)Ly X5)

max
n 1<k<n-—1 =1 g1
J#i
E(W(XiaXj)|f(|¢|>¢3/2)\Xj)} +n 2N Blv(Xy, Xo)  jysism)
=1

= I$Yn) + 1P (n). (13)



By using similar arguments as in the proof of I;(n) = Op(1) and the Kronecker lemma

again, the claim that 75" (n) = Op(1) follows from

11 &
. 2172 Bl (X1, Xo)|(jyysi2)) < Z 1/2 B[y (X1, Xo) [ (y>i3/2)]
=
[e'S) k
1
< Y Ellv(Xy, Xo) [ Lgsracipi<prnsr)] 2217
k=1 =1

< AE[(Xy, Xo)[Y? < o0,
uniformly for all n > 1. As to I{? (n), it is obvious that

IP(n) < n 20V Blp(Xy, Xo) Y3 < AER(X,, Xo)Y = 0(1).

i=1
Taking these estimates into (13), we obtain I3(n) = Op(1). The proof of (10) is now
complete.

The proof of (11) is similar to that of (10), but we have to use a different truncation.
In the following, we let v*(X;, X;) = (Xi, Xj) 1y j<psrz — E[(Xi, X5) L yi<parz], 9°(Xi) =
E(*(X;, X;)|X;) and (X, X;) = (X, X;) — ¢°(Xi) — ¢"(X)). It follows easily that

]' k S ]' * * * *
575 dpax \;j_%lw(Xi,Xﬁ\ < 3 [I5() + () + B(n)] + I (n),  (14)

where [§(n) = ng/g

2im1 Zm (X, X)

Y

[1(71) = n3/2 1<r£3§,1’22w (Xian)>
=F= i=1 j#i
j=1
1
Ii(n) = V(X X)),
2 n3/2 1<k<n 1‘ _zk;r“%l
VE

B = = 1\2 > (B(X X)) = (X, X)) + 97 (X0) + 9°(X))].

i=1 j=k+1

It is readily seen that

E[I;(n)* < An~"Ep*(Xy, Xo)ljyj<pnre
< Al VBB (X, Xo) VP 4 Bl (X, Xo) [V Lyysn]
— 0, asn — oo.



This yields that Ij(n) = op(1). Noting that {3, Y}, Fi,2 < k < n} is a martingale,
where Y, = Ef;ll (X, X;) and Fr, = of{Xy,..., Xi}, it follows from the well-known
Maximum inequality for martingales that, for any ¢ > 0,

P(I;(n) >¢) < 4e¢?n?E max \ZY\ <Ae?n Y EY?

1<k<n-—1

< Ae?nt E¢2(X1,X2)[|w|§n3/2
< AT ER (X0, Xo) [V + Bl (Xy, Xo)[V2 Ty
— 0, asn — oo.

This yields I7(n) = op(1). By a similar argument as in the proof for I3 (n) = op(1), we
have I3(n) = op(1). As for Ij(n), it is readily seen that

Bl < 3 B(Xe X)) — 0 (X0 X,) +97(X0) +9°(X;)

=1 j=1
J#i

S 4n1/2 EH’lp(Xl,XQ)‘[W)'an;/Q]
4 E[|¢( X0, Xo)|V Lyysnsr] — 0,

A

as n — oo, which implies that I} (n) = op(1). Taking all estimates for I} (n),t =0,1,2,3
in to (14), we obtain the required (11). The proof of Lemma 1 is now complete.
The next two lemmas are due to CsCsHM (1986) [cf. Lemma A.5.1 and Theorem

A.5.1 respectively in Cs6gé and Horvéath (1997)]. Proofs of Lemmas 2 and 3 can also be
found in Section 4.1 of Csorgé and Horvath (1993).

Lemma 2 Let q(t) € Q. If I(q,c) < oo for some ¢ > 0, then
L 1)2 _ - N1/2 _
ltll%l t/%/q(t) =0 and ltlgl (1—1t)"=/q(t) = 0.

Lemma 3 Let {W(t),0 <t < oo} be a standard Wiener process and q(t) € Q. Then,
(a) I(q,c) < oo for any ¢ > 0 if and only if

limsup |W(t)|/q(t) =0, a.s. and limsup |W(1) — W (t)|/q(t) =0, a.s.
£10 t11
(b) I(q,c) < oo for some ¢ > 0 if and only if

limsup [W(t)|/q(t) < o0, a.s. and limsup |[W(1) — W (t)|/q(t) < 0o, a.s.
£10 t11



We are now ready to prove our main theorems.

Proof of Theorem 1. Together with the notation as in Section 1, we write ¥ (z,y) =
h(z,y) — 0 — g(z) — g(y) and T,,(t) = Wint1)g,0 <t < 1, where
W, = i )+ k Z g(X
j=1 j=k+1
Noting that g(X;) are iid random variables with Eg(X;) = 0 and 6% = F¢*(X;) < o©
as in the proof of (2.1.45) in Csorg6é and Horvath (1997), on an appropriate probability
space for X, X, Xo, -+ we can define a sequence of Gaussian processes {I',(¢),0 <t < 1}

such that, for each n > 1,
{Tu(t),0 <t <1} 2{T(¢),0 <t < 13,
and if ¢ € Q and I(gq,c) < oo for some ¢ > 0, then, as n — oo,

sup ‘n 3261, (t ’/q = op(1). (15)

1/n<t<(n—1)/

By virtue of (15), Theorem 1 will follow if we prove

Jp = sup ‘n 3200, (t) — n~? T, (t ‘/q = op(1). (16)

1/n<t<(n—1)/
In order to prove (16), write V,,(t) = W[, 1)y, where W = Z?Zl >k V(X XG).
Note that E(¢(X1,X2) | X1> = E(¢(X1,X2) | X2) =0 and
Elp(Xy, Xo)[Y* < ABIM(X,, X < oo
It follows from (11) that

IV = sup V0] fat)

0<t<1-0

: \Z S 0| s a0 = op(D)

n3/2 1<k‘<n 1 —1 j=kt1 5<t<1-§
for any 6 € (0,1) and ¢ € Q. Let 6 > 0 be so small that ¢(¢) is already nondecreasing on

(0,d) and nonincreasing on (1 — §,1) and let n be so large such that 1/n < 4. It follows
from (10) and Lemma 2 that

J@ = sup [n"?V,(t \/q

0<t<o

IN

1 k n
dmax KIS D0 0(X0 )| sup 1 a(t) = op(1),

<k<n—
n lsksn—1 i=1 j=k+1

9



when n — oo and then § — 0. Similarly, we have also

J}f’) = sup |n_3/2V;z(t)|/CI(t)

1-6<t<1

1 k n
e RVESD ST w(XX)| swp 12 /a(t) = op(1),

n 1sksn—1 i=1 j=k+1 1

when n — oo and then § — 0. By virtue of these estimates, it is readily seen that
Jo < JV4JD 4 g LAnTY2 sup 1/q(t) = op(1), (17)
1/n<t<(n-1)/n

which yields (16). The proof of Theorem 1 is now complete.

Proof of Corollary 1. Having Theorem 1, Lemmas 2-3 and the result (16), the
proof of Corollary 1 is the same as that given in the proof of Theorem 2.4.2 in Csorgé

and Horvéath (1997), and hence the details are omitted.

Proof of Theorem 2. We first prove (7). It is readily seen that

U (t) = n732(6) ™ H{ Zynsng — n*t(1 — )8} +t(1 — t)n*(5) (0 — )
n 2 . 1/2 n 1/9 R
= {—Zﬁifx”} w0} U + 11— on2(6) 6 - 0).

=1

(18)

Furthermore U, (t) = T,,(t) 4+ Vi (), where T,,(t) and V,,(t) are defined as in the proof of
Theorem 1. Recalling that g(X;) is in the domain of attraction of the normal law, as in
the proof of Theorem 5.2 of Csorgd, Szyszkowicz and Wang [CsSzW] (2004) with minor
modifications, we have that on an appropriate probability space for X, X;, X5, -+, we can
define a sequence of Gaussian processes {I',,(t),0 <t < 1} such that (2) holds true, and

as n — 00,

n

sup [~ {32 6%(X5)}

0<t<1 =

~1/2

Tu(t) = Tu(®) | /a(t) = op(1),
if and only if (g, c) < oo for any ¢ > 0. Therefore, to prove (7), it suffices to show that
L —1/2
n 32X} swp Va@lfalt) = op(1), (19)
j=1 0<t<1

() a1 = o) (20)

10



and
n'2(6) 10 —0) = op(1). (21)

The proof of (19) is simple and in fact (19) holds true if g(x) satisfies I(q,c) < oo
for some ¢ > 0. Indeed, since g(X;) is in the domain of attraction of the normal
law, we have ;=327 ¢*(X;) —p 1, where b, = nl(n) with that I(n) = Eg¢*(X,) if
Eg¢*(X1) < o0 or l(n) — oo if Fg*(X;) = co. On the other hand, as in the proof of (16),
n=3/2supg_1 |Vi(t)]/q(t) = op(1) even when ¢(x) satisfies I(q,c) < oo for some ¢ > 0,
and hence (19) follows immediately from these facts.

We next prove (20). The claim (21) follows by using (20), and hence the details are

omitted. Without loss of generality, we assume 6 = 0. We may rewrite 62 as

1 1 j
00 = ———— > WX, X)X, Xy) + ————5 > (X, X)) — ¢
n(n —1)2 Z%k ! n(n —1)2 ; !
= Wu + Wipa — 02,

Recalling E|h(X;, X5)[>/? < oo, it follows from a Marcinkiewicz type strong law for U-
statistics that Wy, — 62 — 0, a.s. [see Gine and Zinn (1992), for example]. Therefore (20)

will follow if we prove

{n _129 D) W —1 = op(1). (22)
Write, for ¢ # j # k,

hg) = h(Xz,X)[|h\<n6/o) 9(1)(Xi) = E(hg)‘X@'>’

b = h R — ERY R,

o) = Bl X), 90§2) = BEWulX)). o = Bl Xa).
Noting that E{h{j hiy)| X} = {g™(X:)}*, it is readily seen that ¢{" = {g(X;)}* -
E[R{}) hy)), and

Z hzy zk: = Z wljk—i_ Z Eh(l

i#jFk i#jFk Z#J#k
= > V@) + X WP+l
itk itk
2 3
+ Y @i — oV — 0P — o)
itk

an + Vn2 + Vn3-

11



In the next paragraph, we will show that
n -1
Y FAX)E (07 V) =1 = op(1), (23)
j=1
3 (Voo + Viz) = op(1). (24)

It follows from (23) and (24) that

(00} S AR 1 = op(1) (25)

j=1 iZik
and then (22) follows from (25) and

#j#k i#jF#k

(Z hijhic # > h (1)) < n? P(|A(X1, X2)| > n®?)

S E|h(X1,X2)|5/3I‘h‘Zn6/5 — 0.

We are to prove (23) and (24) now. Consider (23) first. By noting that ¢ (X;) =
9(X1) — g*(Xj), where g*(X;) = E{h(X1, X2)[(jpj5nos5)| X1}, we have

n n

> [HX)Y = (X)) < X [2190) g ()] + 197 ()]

]:1 =1

< 2{;;92(&)}1/2{2":{9* Y]

J=1

.

n

+ Z{g

1/2

Now, since ¢g(X7) is in the domain of attraction of the normal law [which implies that
L3 g*(X;) —p C > 0, where C' may be o], simple calculations show that (23) will

follow if we prove
1 & * 2
S (g ()Y = 0pl1), (26)
=1
In fact, for any € > 0, we have

(Z{g > en)

IA

671/2n71/2 Z E\g*(Xj)

6_1/2n1/2E|h(X1,X2)|I(|h‘2n6/5)
< 6_1/2 E|h(X1, Xg)‘5/3l(‘h‘2n6/5) — 0,

IN

as n — oo. This implies (26) and hence completes the proof of (23).

12



We next prove (24). By noting that n=3V,3 is a degenerate U-statistic of order 3, it
follows from moment inequality for degenerate U-statistics (see, Borovskikh (1996), for

example) that, for any € > 0,

IN

¢ 5/3 5 E|Vps |5/3

Aed3 2E’¢123—90§)_905)_90§)
AP0 BIM(Xy, Xo) "1 <5y
A 0™ 4 BIR(Xy, Xo) | Ly | = 0, (27)

P(|Vys] > en®)
‘5/3

IAN A

IN

as n — o0. On the other hand, by noting that
2
B{E[nZ hP|1X|} = B{n Y B[n) )| x0]}
= B[hi hiy by b
2 2
< B (X0, Xo) Lyensrs]|” < P { EIR(X1, Xo)[P?},
it is readily seen that, for any € > 0,

P(|Vys| > en®) < 6_2E<n_3Vn2)2

< Ae? E( 52)—1-905))
< At [B{E(E )Y + (B{n))]
< Ae*Qn*W{E|h(X1,X2)|5/3} -0, (28)

as n — 00. By virtue of (27) and (28), we obtain (24). The proof of (7) is now complete.
The result (8) is a direct consequence of (7). As for (9), by virtue of (18)-(21) (recalling
that (19) still holds true for ¢(x) satistying I(q,c) < oo for some ¢ > 0, as explained in
its proof), it suffices to show that
aup |1 {2000} L] —p s NO1/att) (29)
=

o<t<l1
if and only if I(g,c) < oo for some ¢ > 0, where T,,(t) = Wipni1)g,0 < t < 1, with
We=(n—k73 g(X;)+k > 9(X;)
Jj=1 j=k+1
This follows from the same arguments as in the proof of Corollary 5.2 in CsSzW (2004),

and hence the details are omitted. This also completes the proof of Theorem 2.
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3 Antisymmetric kernel

In this section we consider the asymptotics of U-type processes with antisymmetric kernel
h(z,y), i.e., h(x,y) = —h(y,z). This kind of kernels can not be symmetrized, but they
are especially useful to check the equality of distributions for different groups of random
variables since Eh(X7, X3) = 0 whenever X; =p X5. An example is given in Pettitt
(1979), who used functions of the Mann-Whitney type statistics
R,(t) = (12)Y27%2 3 3 sign(X; - X))
1<i<nt nt<j<n
to detect possible changes in distribution.

For the anti-symmetric kernel h(z,y), by letting g(t) = Eh(X;,t), we may write

Zr="> Z:: (X, Xj) +n [Zg(X,) — % zn:g(Xi)},
i=1 j=k+1 =1 i=1

where ¢(z,y) = h(z,y) — g(z) + g(y) with
E(Xy, Xo) | Xa] = E[Y(Xy, X3) | Xo] = 0.

Since Lemma 1 does not depend on the symmetry of the kernel, similarly to the
proofs of Theorems 1 and 2, we have the following results for U-type processes with
antisymmetric kernel h(x,y), which improve and generalize the similar earlier results of
Csorgd and Horvath (1988a, b), Szyszkowicz (1991, 1992) and those given in Section
2.4 of Csorgé and Horvath (1997) along these lines. It is interesting to note that the
Gaussian limit process that is shared by Theorems 1 and 2 and that of Theorems 3 and
4 are different, although they are of equal variance. For further related results, we refer
to Janson and Wichura (1983), and Gombay (2000a, b, 2001, 2004).

We continue to use the notations as in Section 1, but U, (¢) and U, (t) are now defined

in terms of antisymmetric kernel h(z,y) = —h(y, x).

Theorem 3 Let g € Q. Assume Hy, 0 < 0% < oo and E|h(X,, X3)|[*? < co. Then, on
an appropriate probability space for X, Xy, Xo, -+, we can define a sequence of Brownian

bridges { B, (t),0 <t <1} such that if 1(q,c) < oo for some ¢ > 0, then as n — oo,

sup ‘n 261U, (t ‘/q = op(1). (30)

1/n<t<(n—-1)/

14



Consequently, we have that
(a) a sequence of Brownian bridges {B,(t),0 <t < 1} can be defined such that (30)
holds true if and only if I(q,c) < oo for any ¢ > 0;

(b) as n — o0,

n~PeTL () [a(t) = B(t) /qt) (31)
on (DI[0,1],p), where p is the sup-norm metric for functions in D[0,1], if and only if
I(q,c) < 0o for any ¢ > 0;

(c) as n — oo,

n~32671 sup |Un(t)| fq(t) —p sup |B(t)]/q(t) (32)
0<t<1 0<t<1
if and only if I(q,c) < oo for some ¢ > 0, where, in (b) and (c), {B(t),0 <t <1} isa

Brownian bridge.

Theorem 3 is to be compared to Szyszkowicz (1991, Theorem 2.1) [cf. Theorem 2.4.1
in Csorgé and Horvath (1997)].

Theorem 4 Let ¢ € Q. Assume Hy, E|h(X1, X2)|?? < oo and that g(X1) is in the

domain of attraction of the normal law. Then, on an appropriate probability space for

X, X1, Xo,- -+, we can define a sequence of Brownian bridges {B,(t),0 < t < 1} such
that, as n — oo,
sup | Un(t) = Bu(t) | /a(t) = op(1), (33)
0<t<1

if and only if I(q,c) < oo for any ¢ > 0. Consequently, as n — oo,

Un®)/a(t) = B() /a(t). on (D[0.1].p) (34)

if and only if I(q,c) < oo for any ¢ > 0, where {B(t),0 < t < 1} is a Brownian bridge.

Furthermore we also have

swp [Un(t)l/a(t) —p sup [BEO)I/a(t) (35)

0<t<1
if and only if I(q,c) < oo for some ¢ > 0.

On taking h(z,y) = x — y, Theorem 4 essentially extends Corollary 2.1.1 of Csorgd
and Horvéth (1997) [cf. Theorem 5.1 in CsSzW (2004)] and rhymes with Theorem 5.2 of
CsSzW (2004) [cf. also CsSzW (2006)], where we study directly the problem of change in

the mean in the domain of attraction of the normal law.
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