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Instituto de Matemáticas, UNAM, Area de la Investigación Cient́ıfica,
Circuito Exterior, CU, México 04510 D.F., México
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1. Introduction

Long-range dependence processes (also called long-memory processes) and their statistics
have many areas of application: finance, econometrics, hydrology, meteorology, turbulence, geo-
physics, statistical physics, communication networks, neuroscience, analysis of DNA sequences.
The literature on the subject is vast and varied; we give only a sample of recent references in
applied fields: [8, 9, 10, 11, 12, 15, 20, 22, 28, 31, 33, 36, 37, 38, 41, 44, 46, 47, 49, 50, 54, 57];
∗ Research partially supported by CONACyT grant 37130-E (Mexico)
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the book [16] surveys long-range dependence from its origins to several recent applications. The
phenomenon of long-range dependence may occur in the temporal structure of a process and in
the spatial structure of a random field, and the processes and fields may be Gaussian or non-
Gaussian, stationary or non-stationary (see e.g. [15, 49] and references therein for long-range
dependence random fields).

It is worthwhile to study long-range dependence processes that arise from specific stochastic
systems which are also of interest by themselves. In this paper we study long-range dependence,
self-similar Gaussian processes related to some spatially distributed particle systems. We focus
mainly on occupation time fluctuations of branching and non-branching systems with immi-
gration. Our purpose is to show how various types of long-range dependence processes can be
obtained from fluctuations of particle systems. The ways in which such processes arise exhibit
interesting properties of the systems and may lead to possible applications.

Long-range dependence may be conceptualized in various ways (see e.g. [29, 30, 45, 54]).
What we regard here as long-range dependence for Gaussian processes is the decay of the co-
variance of increments on intervals according to a negative power of the distance between the
intervals. This can be viewed as a form of mixing. All the long-range processes we shall see
here are not stationary, and all except fractional Brownian motion do not have stationary incre-
ments. (For self-similar processes with stationary increments, the term “long-range dependence”
is used for the case where the covariance of the increment process decays so slowly that it is
not summable; for fractional Brownian motion this corresponds to Hurst parameter > 1/2; see
[45, 54]).

The best known and most widely used long-range dependence, self-similar Gaussian process
is fractional Brownian motion (fBm), ξh = {ξh(t), t ≥ 0}, h ∈ (0, 2), whose covariance function
is

Cξh
(s, t) =

1
2
[sh + th − (t− s)h], 0 ≤ s ≤ t. (1.1)

H = h/2 is called Hurst parameter (see e.g. [45, 54]). The process ξh coincides with Brownian
motion (Bm) for h = 1, and for h 6= 1 it is a limit in distribution of several types of processes
(e.g., [1, 10, 12, 13, 18, 36, 43, 46, 51, 53, 56]). Furthermore, ξh with h ∈ (1, 3/2] is also
obtained from a scaling limit of occupation time fluctuations of a Poisson system of particles
moving independently in Rd according to a symmetric α-stable Lévy process, α ∈ (0, 2], under
the condition 1 = d < α, with h given by h = 2 − 1/α [4] (the particle system is described in
Section 2). The case α = 2 (corresponding to h = 3/2) also follows from an occupation time
fluctuation limit theorem in [14] (no relation to fBm and long-range dependence is mentioned
in that paper).

Another long-range dependence, self-similar Gaussian process, ζh = {ζh(t), t ≥ 0}, h ∈ (0, 2),
with covariance function

Cζh
(s, t) = sh + th − 1

2
[(s+ t)h + (t− s)h], 0 ≤ s ≤ t, (1.2)

was obtained in [4], and it also coincides with Bm for h = 1. The process ζh has some of the main
properties of ξh for h 6= 1, in particular it is not a Markov process and not a semimartingale,
but it does not have stationary increments and it is more weakly correlated than ξh. The
main difference between ξh and ζh regarding long-range dependence is that the covariance of
increments on intervals separated by distance τ decays at rate τh−2 for ξh and at rate τh−3

for ζh as τ → ∞. Thus the long-range dependence decays faster for ζh than for ξh. Hence ζh
is intermediate between Bm and fBm, and that is why it was called “sub-fractional Brownian
motion” (sub-fBm). See [4] for a study of properties sub-fBm and comparisons with fBm. A
process like sub-fBm was introduced in [17] in a different context.
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It is shown in [4] that ζh with h ∈ (1, 2) is obtained from a scaling limit of occupation time
fluctuations of the above-mentioned particle system where the particles additionally undergo
critical binary branching (see the description in Section 2), under the condition α < d < 2α,
with h given by h = 3 − d/α. The case d = 3, α = 2 (corresponding to h = 3/2) also coincides
with an occupation time fluctuation limit in the context of superprocesses stated in [34] without
proof (no mention of long-range dependence); see also [32].

In this paper we study the effect on the occupation time fluctuation limits of incorporating
immigration in the particles systems, with and without branching. This leads to two new long-
range dependence, self-similar Gaussian processes whose covariance functions are given by

sh+1 + th+1 − (t− s)h(hs+ t), 0 ≤ s ≤ t, h ∈ (1, 3/2], (1.3)

without branching, and

sh+1 + th+1 − 1
4
(s+ t)h+1 − 1

4
(t− s)h[(2h− 1)s+ 3t], 0 ≤ s ≤ t, h ∈ (1, 2), (1.4)

with branching.
Another long-range dependence, self-similar Gaussian process with covariance function

(s+ t)h − (t− s)h − 2hs(t− s)h−1, 0 ≤ s ≤ t, h ∈ (1, 3/2], (1.5)

arises from fluctuations of the immigration branching system itself (not its occupation time).
The special case of this process with d = 1, α = 2 (h = 3/2) is also related to a limit theorem
in [39] in the context of superprocesses (no mention of long-range dependence).

Other long-range dependence, self-similar Gaussian processes can be derived from asymp-
totics of immigration superprocesses, e.g., the super-Brownian motion with super-Brownian
immigration studied in [58]; an example is a process with covariance function

2
3

[(
s+ t

2

)3/2

−
(
t− s

2

)3/2
]

+
1√
2
(t+ s)2[(t+ s)−1/2 − (t− s)−1/2], 0 ≤ s ≤ t. (1.6)

Existence of the Gaussian processes with the previous covariances can be established simply
by taking limits of the covariance functions of the systems, as we shall see. Although convergence
of the covariance alone yields only partial (and not always reliable) information, the results
suggest that the fluctuations of the corresponding spatially distributed particle processes should
be asymptotically Gaussian with long-range dependence (under suitable conditions on d and α).
In order to show that this is so, it is necessary to prove a much stronger convergence, namely,
functional convergence of the particle processes. This is done in [5] for the occupation time
fluctuations of the particle systems with and without branching, but no immigration, which are
related to the covariances (1.1) and (1.2). The proofs involve a higher level of technical difficulty.
In this paper we concentrate on existence of the Gaussian processes with the covariances (1.3)
and (1.4), and we study their properties. Corresponding functional convergence results may
be proved with the methods of [6]. The cases of covariances (1.5) and (1.6) and others can be
studied similarly. In all the cases of space-time Gaussian limits we shall see, the covariance of the
limit is a product of a spatial covariance and a temporal covariance; the covariances (1.1)-(1.6)
are the temporal parts.

In Section 2 we prove existence of the long-range dependence Gaussian processes with co-
variances (1.3)-(1.5) by showing how they arise from immigration particle systems. As expected
when long-range dependence is involved, the normings required for the scaling limits are atypical
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(i.e., different from the one for the classical central limit theorem). Continuing with particle sys-
tems, in Section 3 we show that a non-Markov process called “demographic variation process”,
which measures the difference between the branching particle system and the system without
branching (both without immigration) leads to sub-fBm. Section 4 is devoted to properties of
the Gaussian processes with covariances (1.3) and (1.4); this section can be read independently
of the others. In Section 5 we make some comments, including remarks on functional limits for
the particle systems and on the causes of long-range dependence in the systems, and we men-
tion some long-range dependence non-Gaussian processes that also arise from branching particle
systems.

2. Fluctuation of some particle systems

The following theorem gives existence of the Gaussian processes with covariances (1.3) and
(1.4). We will prove it from long-time asymptotics of occupation time fluctuations of the particle
systems described below.

Theorem 2.1.
(1) There exists a centered Gaussian process ηh = {ηh(t), t ≥ 0} for each h ∈ (1, 3/2] with
covariance function

Cηh
(s, t) = E(ηh(s)ηh(t)) = sh+1 + th+1 − (t− s)h(hs+ t), 0 ≤ s ≤ t. (2.1)

(2) There exists a centered Gaussian process σh = {σh(t), t ≥ 0} for each h ∈ (1, 2) with
covariance function

Cσh
(s, t) = E(σh(s)σh(t))

= sh+1 + th+1 − 1
4
(s+ t)h+1 − 1

4
(t− s)h[(2h− 1)s+ 3t], 0 ≤ s ≤ t, (2.2)

The particle systems on Rd are described as follows, adding immigration in the ones studied
in [4]. At the initial time t = 0 particles are distributed according to a Poisson random field
on Rd with Lebesgue intensity measure. Particles immigrate according to a space-time Poisson
random field on Rd ×R+ with Lebesgue intensity measure. All particles evolve independently,
moving according to a symmetric α-stable Lévy process, α ∈ (0, 2] (α = 2 corresponds to
Brownian motion), and branching at rate V according to a critical binary branching law (i.e.,
at an exponentially distributed lifetime with parameter V a particle dies or splits into two
particles, each case with probability 1/2). Note that putting V = 0 we have the system without
branching. Let N = {Nt, t ≥ 0} denote the measure-valued process such that Nt(A) is the
number of particles in a set A ⊂ Rd at time t. This is clearly a Markov process.

We use the following notation: pt(x, y) = pt(x−y) denotes the transition probability density
of the α-stable process, {Tt, t ≥ 0} denotes its semigroup (i.e, Ttϕ(x) =

∫
pt(x, y)ϕ(y)dy), we

take functions ϕ ∈ S(Rd) (the usual space of smooth rapidly decreasing functions), and we write
〈µ, f〉 =

∫
fdµ, where µ is a measure and f is a function on Rd. Lebesgue measure on Rd is

written λ. Recall that the Fourier transform of ϕ is defined by ϕ̂(z) =
∫
eix·zϕ(x)dx where x · z

is the scalar product in Rd.
We will simplify the proofs slightly by assuming that there are no initial particles (at time

0). However, we shall see that the results below are the same if the initial particles are included
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(Remark 2.4.(a)). With this assumption the mean and the covariance of the process N are given
by

E〈Nt, ϕ〉 = t〈λ, ϕ〉, t ≥ 0, ϕ ∈ S(Rd), (2.3)

and

Cov(〈Ns, ϕ〉, 〈Nt, ψ〉)

= s〈λ, ϕTt−sψ〉+ V

∫ s

0

∫ s−r

0
〈λ, ϕTt+s−2(r+u)ψ〉dudr, 0 ≤ s ≤ t, ϕ, ψ ∈ S(Rd). (2.4)

Formulas of this type in a more general setting are derived by martingale methods based on the
Markov property of the process N (see e.g. [26]), and formulas (2.3) and (2.4) are obtained by
specializing to the present case (as a consequence of the invariance and the self-adjointness of
Tt with respect to λ, and the critical binary branching).

The rescaled occupation time process LT = {LT (t), t ≥ 0} of N is defined by

〈LT (t), ϕ〉 =
∫ Tt

0
〈Ns, ϕ〉ds = T

∫ t

0
〈NTs, ϕ〉ds, t ≥ 0, ϕ ∈ S(Rd), (2.5)

where T > 0 is the scaling parameter that will tend to ∞. This process is not Markov.
The fluctuation process XT = {XT (t), t ≥ 0} of LT is defined by

〈XT (t), ϕ〉 =
1
FT

(〈LT (t), ϕ〉 − E〈LT (t), ϕ〉)

=
T

FT

∫ t

0
(〈NTs, ϕ〉 − E〈NTs, ϕ〉)ds, t ≥ 0, ϕ ∈ S(Rd), (2.6)

where FT > 0 is a norming. From the perspective of particle systems, the aim is to find FT such
that XT converges in distribution as T →∞ and to identify the limit process (see Section 5 for
comments on functional convergence and space-time Gaussian limits). For our purpose here it
suffices to show convergence of the covariance of XT .

Taking covariance of the process in (2.6) we have

Cov(〈XT (s), ϕ〉, 〈XT (t), ψ〉) =
T 2

F 2
T

∫ s

0
du

∫ t

0
dv Cov(〈NTu, ϕ〉, 〈NTv, ψ〉)

=
T 2

F 2
T

(∫ s

0
du

∫ t

s
dv +

∫ s

0
du

∫ s

u
dv +

∫ s

0
dv

∫ s

v
du

)
Cov(〈NTu, ϕ〉, 〈NTv, ψ〉),

s ≤ t, ϕ, ψ ∈ S(Rd). (2.7)

Using the Plancherel formula for Fourier transform and T̂tϕ(z) = e−t|z|αϕ̂(z) in (2.4), we rewrite
(2.7) as

Cov(〈XT (s), ϕ〉, 〈XT (t), ψ〉)

=
1

(2π)d

T 2

F 2
T

∫
Rd
ϕ̂(z)ψ̂(z)

(∫ s

0
du

∫ t

s
dv + 2

∫ s

0
du

∫ s

u
dv

)
[
e−T (v−u)|z|αTu+ V

∫ Tu

0

∫ Tu−r

0
e−[T (v+u)−2(r+w)]|z|αdwdr

]
dz, s ≤ t. (2.8)
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We want to take the limit of the covariance (2.8) as T →∞ without the branching (V = 0) and
with the branching (V > 0). The results are given in the next two theorems.

Theorem 2.2. (No branching, V = 0)

(1) For (1 =) d < α, with FT = T (3−d/α)/2, and for any ϕ,ψ ∈ S(Rd),

lim
T→∞

Cov(〈XT (s), ϕ〉, 〈XT (t), ψ〉)

= 〈λ, ϕ〉〈λ, ψ〉 Γ(2− h)
πα(h− 1)h(h+ 1)

[sh+1 + th+1 − (t− s)h(hs+ t)], s ≤ t, (2.9)

where h = 2− d/α, h ∈ (1, 3/2].

(2) For d > α, with FT = T , and for any ϕ,ψ ∈ S(Rd),

lim
T→∞

Cov(〈XT (s), ϕ〉, 〈XT (t), ψ〉) = 〈λ, ϕGψ〉s2, s ≤ t, (2.10)

where G is the potential operator of the symmetric α-stable process in Rd,

Gψ(x) =
Γ(d−α

2 )

2απ
d
2 Γ(α

2 )

∫
Rd

ψ(y)
|x− y|d−α

dy, d > α, (2.11)

Theorem 2.3. (Branching, V > 0)
For α < d < 2α, with FT = T (4−d/α)/2, and for any ϕ,ψ ∈ S(Rd),

lim
T→∞

Cov(〈XT (s), ϕ〉, 〈XT (t), ψ〉)

= 〈λ, ϕ〉〈λ, ψ〉 V Γ(2− h)
2d−1πd/2αΓ(d/2)(h− 1)h(h+ 1)

×
(
sh+1 +th+1 − 1

4
(s+ t)h+1 − 1

4
(t−s)h[(2h−1)s+ 3t]

)
, s ≤ t, (2.12)

where h = 3− d/α, h ∈ (1, 2).

Proof of Theorem 2.2:
(1) Making the change of variable z = y(T ) = (T (v − u))−1/αy in (2.8) (with V = 0) we have

Cov(〈XT (s), ϕ〉, 〈XT (t), ψ〉)

=
1

(2π)d

T 3−d/α

F 2
T

(∫ s

0
du

∫ t

0
dv + 2

∫ s

0
du

∫ s

u
dv

)
u(v − u)−d/α

×
∫

Rd
ϕ̂(y(T ))ψ̂(y(T ))e−|y|

α
dy. (2.13)

In order to obtain a limit in (2.13) we put FT = T (3−d/α)/2 and we have

lim
T→∞

Cov(〈XT (s), ϕ〉, 〈XT (t), ψ〉)

=
1

(2π)d
ϕ̂(0)ψ̂(0)

∫
Rd
e−|y|

α
dy

(∫ s

0
du

∫ t

s
dv + 2

∫ s

0
du

∫ s

u
dv

)
u(v − u)−d/α, (2.14)
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but ϕ̂(0) = 〈λ, ϕ〉, ψ̂(0) = 〈λ, ψ〉,

1
(2π)d

∫
Rd
e−|y|

α
dy =

Γ(d/α)
2d−1πd/2αΓ(d/2)

=
Γ(1/α)
πα

,

and (∫ s

0
du

∫ t

s
dv + 2

∫ s

0
du

∫ s

u
dv

)
u(v − u)−d/α

=
1

(1− d/α)(2− d/α)(3− d/α)

×
[
s3−d/α + t3−d/α −

(
3− d

α

)
s(t− s)2−d/α − (t− s)3−d/α

]
, d < α.

Hence, denoting h = 2− d/α we obtain (2.9) from (2.14).

(2) We have from (2.8) (with V = 0), integrating on v,

Cov(〈XT (x), ϕ〉, 〈XT (t), ψ〉)

=
1

(2π)d

T 2

F 2
T

∫
Rd

ϕ̂(z)ψ̂(z)
|z|α

[∫ s

0
(e−T (s−u)|z|α − e−T (t−u)|z|α)udu

+2
∫ s

0
(1− e−T (s−u)|z|α)udu

]
dz. (2.15)

For convergence in (2.15) we put FT = T and we have

lim
T→∞

Cov(〈XT (s), ϕ〉, 〈XT (t), ψ〉) =
s2

(2π)d

∫
Rd

ϕ̂(z)ψ̂(z)
|z|α

dz.

But
1

(2π)d

∫
ϕ̂(z)ψ̂(z)
|z|α

dz = 〈λ, ϕGψ〉

with G given by (2.11). Hence we obtain (2.10). 2

Proof of Theorem 2.3: We write (2.8) as

Cov(〈XT (s), ϕ〉, 〈XT (t), ψ〉) = AT (s, t) +BT (s, t), (2.16)

where

AT (s, t) =
1

(2π)d

T 2

F 2
T

∫
Rd
ϕ̂(z)ψ̂(z)

(∫ s

0
du

∫ t

s
dv + 2

∫ s

0
du

∫ s

u
dv

)
e−T (v−u)|z|αTudz

and

BT (s, t) =
V

(2π)d

T 2

F 2
T

∫
Rd
ϕ̂(z)ψ̂(z)

(∫ s

0
du

∫ t

s
dv + 2

∫ s

0
du

∫ s

u
dv

)
(∫ Tu

0

∫ Tu−r

0
e−[T (u+v)−2(r+w)]|z|αdwdr

)
dz. (2.17)
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We know from Theorem 2.2.(2) that AT (s, t) converges with FT = T as T → ∞ for d > α,
and on the other hand we shall see that BT (s, t) converges with FT = T (4−d/α)/2 for α < d < 2α;
therefore AT (s, t) with the latter norming goes to zero as T →∞.

Computing in (2.17) we find

BT (s, t) =
V

(2π)d

T 2

F 2
T

∫
Rd
ϕ̂(z)ψ̂(z)

(∫ s

0
du

∫ t

s
dv + 2

∫ s

0
du

∫ s

u
dv

)
(
Tu

2|z|α
e−T (v−u)|z|α − T

4|z|α

∫ v+u

v−u
e−Tr|z|αdr

)
dz.

Making the changes of variables z = y1(T ) = (T (v − u))−1/αy and z = y2(T ) = (Tr)−1/αy in
the first and second terms, respectively, we have

BT (s, t) =
V

4(2π)2
T 4−d/α

F 2
T

(∫ s

0
du

∫ t

s
dv + 2

∫ s

0
du

∫ s

u
dv

)
(

2u(v − u)1−d/α

∫
Rd
ϕ̂(y1(T ))ψ̂(y1(T ))

e−|y|
α

|y|α
dy

−
∫ v+u

v−u

∫
Rd
ϕ̂(y2(T ))ψ̂(y2(T ))

e−|y|
α

|y|α
r1−d/αdrdy

)
. (2.18)

To obtain a limit in (2.18) we put FT = T 2−d/2α, and therefore

lim
T→∞

BT (s, t) =
V ϕ̂(0)ψ̂(0)

4(2π)d

∫
Rd

e−|y|
α

|y|α
dy

(∫ s

0
du

∫ t

s
dv + 2

∫ s

0
du

∫ s

u
dv

)
(

2u(v − u)1−d/α +
(v − u)2−d/α − (v + u)2−d/α

2− d/α

)
. (2.19)

But
1

(2π)d

∫
Rd

e−|y|
α

|y|α
dy =

Γ(d/α− 1)
2d−1πd/2αΓ(d/2)

, d > α,

(∫ s

0
du

∫ t

s
dv + 2

∫ s

0
du

∫ s

u
dv

)
u(v − u)1−d/α

=
t4−d/α + s4−d/α−(4− d/α)s(t−s)3−d/α − (t−s)4−d/α

(2− d/α)(3− d/α)(4− d/α)
, d < 2α,

(∫ s

0
du

∫ t

s
dv + 2

∫ s

0
du

∫ s

u
dv

)
(v − u)2−d/α =

t4−d/α + s4−d/α − (t− s)4−d/α

(3− d/α)(4− d/α)
,

and (∫ s

0
du

∫ t

s
dv + 2

∫ s

0
du

∫ s

u
dv

)
(v + u)2−d/α =

(t+ s)4−d/α − t4−d/α − s4−d/α

(3− d/α)(4− d/α)
.

Putting these results together and letting h = 3− d/α we obtain (2.12) from (2.19). 2

The following simple argument now proves Theorem 2.1.

Proof of Theorem 2.1:
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Theorems 2.2 and 2.3 imply that the functions (2.1) and (2.2), which appear as the temporal
parts of the limits in (2.9) and (2.12), are non-negative definite (as limits of non-negative definite
functions). Therefore by a well-known result (see e.g. [42]) there exist real centered Gaussian
processes ηh and σh having the functions (2.1) and (2.2) as covariances, respectively. 2

Remark 2.4. (a) For the systems with initial particles distributed according to a uniform
Poisson random field on Rd and no immigration, the normings for convergence of the occupation
time fluctuations are FT = T (2−d/α)/2 without branching, and FT = T (3−d/α)/2 with branching
[4]. Since the corresponding normings for the immigration systems are of higher orders (FT =
T (3−d/α)/2 and FT = T (4−d/α)/2, respectively), the effect of the initial particles on the occupation
time fluctuations of the immigration systems vanishes as T →∞. Hence Theorems 2.2 and 2.3
also hold with the initial particles included.
(b) In Theorem 2.2.(2) the temporal structure of the limit covariance corresponds to Brownian
motion with change of time t 7→ t2, which does not have long-range dependence. The reason for
giving this result is that the order of the norming was used in the proof of Theorem 2.3.

We consider next the branching and immigration process N itself (with no initial particles)
and its normed fluctuation process YT = {YT (t), t ≥ 0}, defined by

〈YT (t), ϕ〉 =
1
FT

(〈NTt, ϕ〉 − E〈NTt, ϕ〉), t ≥ 0, ϕ ∈ S(Rd).

Theorem 2.5. For (1 =) d < α, with FT = T (2−d/α)/2, and for any ϕ,ψ ∈ S(Rd),

lim
T→∞

Cov(〈YT (s), ϕ〉, 〈YT (t), ψ〉))

= 〈λ, ϕ〉〈λ, ψ〉 V Γ(2− h)
2πα(h− 1)h

[(s+ t)h − (t− s)h − 2hs(t− s)h−1], s ≤ t, (2.20)

where h = 2− d/α, h ∈ (1, 3/2].

For α = 2 this result agrees with an immigration superprocess fluctuation limit in [39]
(Theorem 1.10). The temporal part of the limit in (2.20) is the function (1.5), and therefore a
real centered Gaussian process with this function as covariance exists. Theorem 2.5 is proved
similarly as the previous theorems.

3. Fluctuations of the demographic variation process

An objective of this section is to show that different types of particle systems may lead to
the same long-range dependence process. We consider the case of sub-fBm.

We recall the definition of the demographic variation process in a special case (see [23] for a
general setup and details, and [24] for a multitype context). We consider the branching particle
system described in Section 2, but now we suppress the immigration. The measure-valued
process N = {Nt, t ≥ 0} is defined as before. We decompose Nt as Nt = N I

t +N II
t , where the

processes N I = {N I
t , t ≥ 0} and N II = {N II

t , t ≥ 0} are constructed as follows. For each initial
particle, if it splits into two particles, then only one of them (chosen at random) is retained, and
if it dies, then it is replaced by a new particle at the death site and this particle lives forever
(without branching) moving according to the α-stable process. If the initial particle splits into
two, then the same is done with the retained particle, and so on. This defines the process
N I , which is just a Poisson system of independent (non-branching) particles. N I is called the
“basic population process” of the branching particle system. The process N II is defined by
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N II
t = Nt − N I

t for each t. Since N II measures the difference between the branching particle
system and the basic population process due to branchings and deaths in the population, it is
called “demographic variation process” of the branching system. Note that the atoms of N II

t

have charge 1 if they belong to Nt, and they have charge −1 if they belong to N I
t (cancellations of

charges due to particles at the same site at the same time have probability zero). The processes
N and N I are Markov. N II is not Markov because a particle that was retained and has not
branched up to time t does not appear in N II

t but it produces atoms of N II in the future when
it splits or dies.

Recall that fBm and sub-fBm with h > 1 are obtained from rescaled occupation time fluc-
tuations of the processes N I and N , respectively [4]. We will show that the rescaled occupation
time fluctuations of the process N II also lead to sub-fBm with h > 1.

The rescaled occupation time process LT = {LT (t), t ≥ 0} of N II is defined by

〈LT (t), ϕ〉 =
∫ Tt

0
〈N II

s , ϕ〉ds = T

∫ t

0
〈N II

Ts, ϕ〉ds, t ≥ 0, ϕ ∈ S(Rd), (3.1)

and we consider the normed fluctuation process XT = {XT (t), t ≥ 0} defined by

〈XT (t), ϕ〉 =
1
FT

〈LT (t), ϕ〉, t ≥ 0, ϕ ∈ S(Rd), (3.2)

(in this special case, ELT (t) = 0; see below).
The covariances for the present setup are obtained by specializing the model of [23] as

follows (with the notation of [23]). Let γ = 1 (initial Poisson intensity), β = 0 (no immigration),
p0 = p2 = 1

2 (critical binary branching). Hence α = 0 (α is the Malthusian parameter in [23]),
m1 = 1,m2 = 1 (mean and second factorial moment of the branching law). We set the branching
rate V = 2 (so that V p0 = 1, which simplifies some formulas, but the results are valid for any
V > 0). In [23] the particle motion is Brownian motion but the results hold also for α-stable
process ([24] deals with multitype α-stable motions). Then from [23] (Equations (14) and (16))
we obtain

Cov(〈Nu, ϕ〉, 〈Nv, ψ〉) = 〈λ, ϕTv−uψ〉+ 2
∫ u

0
〈λ, ϕTv−u+2rψ〉dr, u ≤ v, ϕ, ψ ∈ S(Rd), (3.3)

and

Cov(〈N II
u , ϕ〉, 〈N II

v , ψ〉) = 2(1− e−u)〈λ, ϕTv−uψ〉+ 2
∫ u

0
〈λ, ϕTv−u+2rψ〉dr

−2e−u

∫ u

0
er〈λ, ϕTv−u+2rψ〉dr. (3.4)

(ELT (t) = 0 because EN II
t = 0, by [23], Equation (15)).

Theorem 3.1. For α < d < 2α, with FT = T (3−d/α)/2, and for any ϕ,ψ ∈ S(Rd),

lim
T→∞

Cov(〈XT (s), ϕ〉, 〈XT (t), ψ〉)

= 〈λ, ϕ〉〈λ, ψ〉 Γ(2− h)
2d−2πd/2αΓ(d/2)h(h− 1)

(
sh+1 + th+1 − 1

2
[(s+ t)h + (t− s)h]

)
, s ≤ t, (3.5)

where h = 3− d/α, h ∈ (1, 2).

Proof: We have from (3.3) and (3.4),

Cov(〈N II
u , ϕ〉, 〈N II

v , ψ〉) = Cov(〈Nu, ϕ〉, 〈Nv, ψ〉) + (1− 2e−u)H1(u, v)− 2H2(u, v), (3.6)
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where

H1(u, v) = 〈λ, ϕTv−uψ〉, u ≤ v, (3.7)

H2(u, v) = e−u

∫ u

0
er〈λ, ϕTv−u+2rψ〉dr, u ≤ v. (3.8)

The covariance of the process XT is given by

Cov(〈XT (s), ϕ〉, 〈XT (t), ψ〉) =
T 2

F 2
T

∫ s

0
du

∫ t

0
dvCov(〈N II

Tu, ϕ〉, 〈N II
Tv, ψ〉), (3.9)

and a corresponding formula holds for the covariance of the occupation time fluctuation of the
rescaled process N . In the case of N the covariance converges to the right-hand side of (3.5)
for α < d < 2α, with FT = T (3−d/α)/2, as T →∞ [4]. Therefore we see from (3.6)-(3.9) that in
order to prove the theorem it suffices to show that

lim
T→∞

T d/α−1

∫ s

0
du

∫ t

0
dv[(1− 2e−Tu)H1(Tu, Tv)− 2H2(Tu, Tv)] = 0, (3.10)

and for this it is enough to prove that

lim
T→∞

T d/α−1H1(Tu, Tv) = 0, (3.11)

lim
T→∞

T d/α−1H2(Tu, Tv) = 0. (3.12)

Now, (3.11) is immediate from (3.7) because, by the scaling property the α-stable process
on Rd,

Ttϕ = O(t−d/α) as t→∞. (3.13)

From (3.8) and again by (3.13) we have H2(Tu, Tv) = O(T−d/α) asT →∞, so (3.12) follows.
2

Remark 3.2. (a) Note that (3.10) holds for any values of d and α.
(b) We have seen that the occupation time fluctuations of the processes N and N II both lead
to sub-fBm, although these processes are quite different. N is Markov and N II is not. On the
other hand, the extinction of individual families caused by the critical branching produces more
and more particles which contribute to the process N I , and therefore to the negative atoms
of N II . We now explain why the occupation time fluctuations of N and N II have the same
asymptotic behavior. Any region where particles are going extinct (and becoming particles with
charge −1) is repopulated by particles (with charge 1) coming from other regions of space by
transience of the motion (since d > α) which have not died yet (in fact these two effects balance
each other and produce an equilibrium state of the process N in the large time limit [27]), and
since (3 − d/α)/2 > 1/2 (because d < 2α), the effect of the process N I on the occupation
time fluctuation limit of N II becomes negligible because the norming for the occupation time
fluctuation limit of N I is T 1/2 for d > α.
(c) Another particle system (without branching) which also leads to sub-fBm is given in [4].

4. Properties of the long-range dependence processes ηh and σh

In Theorem 2.1 we established the existence of the processes ηh and σh. In this section we
give some of their properties.

Theorem 4.1. The process ηh has the following properties:
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(a) ηh is h+1
2 -self-similar.

(b)
Cηh

(s, t) > 0, s, t > 0.

(c)
E(ηh(t)− ηh(s))2 = 2(hs+ t)(t− s)h, s ≤ t,

hence
2(h+ 1)s(t− s)h ≤ E(ηh(t)− ηh(s))2 ≤ 2(h+ 1)t(t− s)h, s ≤ t.

(d) Hölder continuity: ηh has a continuous version, and for each ε ∈ (0, h/2] and each L > 0
there exists a random variable Kε,L such that

|ηh(t)− ηh(s)| ≤ Kε,L|t− s|
h
2
−ε, s, t ∈ [0, L], a.s.

(e) Let
Rηh

(u, v, s, t) = E(ηh(v)− ηh(u))(ηh(t)− ηh(s)), 0 ≤ u < v ≤ s < t,

Then
Rηh

(u, v, s, t) > 0

and

Rηh
(u, v, s+ τ, t+ τ)τ2−h → 1

2
(h− 1)h(h+ 1)(t− s)(v2 − u2) as τ →∞.

(f) ηh is not a Markov process.

(g) ηh is not a semimartingale.

Theorem 4.2. The process σh has the following properties:

(a) σh is h+1
2 -self-similar.

(b)
Cσh

(s, t) > 0, s, t > 0. (4.1)

(c)

E(σh(t)−σh(s))2 = −2h−1(sh+1+th+1)+
1
2
(s+t)h+1+

1
2
[(2h−1)s+3t](t−s)h, s ≤ t, (4.2)

and there exist a positive constant ch such that

chs(t− s)h ≤ E(σh(t)− σh(s))2 ≤ (h+ 1)t(t− s)h. (4.3)

(d) Hölder continuity: σh has a continuous version, and for each ε ∈ (0, h/2] and each L > 0
there exists a random variable Kε,L such that

|σh(t)− σh(s)| ≤ Kε,L|t− s|
h
2
−ε, s, t ∈ [0, L], a.s.
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(e) Let
Rσh

(u, v, s, t) = E(σh(v)− σh(u))(σh(t)− σh(s)), 0 ≤ u < v ≤ s < t,

Then
Rσh

(u, v, s, t) > 0, (4.4)

and

Rσh
(u, v, s+ τ, t+ τ)τ3−h → 1

6
(h− 1)h(h+ 1)(2− h)(t− s)(v3 − u3) as τ →∞. (4.5)

(f) σh is not a Markov process.

(g) σh is not a semimartingale.

Remark 4.3. The decay rates τh−2 and τh−3 of the covariances of increments for ηh and σh on
intervals separated by distance τ , which characterize their long-range dependence, are the same
as for fBm and sub-fBm, respectively [4].

Since the proofs for ηh and σh are analogous, we will give only those for σh, which involve
additional work.

Proof of Theorem 4.2:
Denote for brevity C(s, t) = Cσh

(s, t) and R(u, v, s, t) = Rσh
(u, v, s, t).

(a) The self-similarity, i.e., {σh(at), t ≥ 0} d= {a(h+1)/2σh(t), t ≥ 0} for any a > 0, is obvious
from the form of C(s, t) given in (2.2).

(b) From (2.2) we have C(0, t) = 0, C(t, t) = (2− 2h−1)th+1 for t > 0, and

∂

∂s
C(s, t) = (h+ 1)sh

(
1− 1

4
m

(
t

s

))
, s ≤ t,

where
m(x) = (x+ 1)h − (x− 1)h − 2h(x− 1)h−1, x ≥ 1.

We will show that 0 < m(x) < 4 for x > 1, which implies (4.1). Since m(1) = 2h < 4 and
m(x) → 0 as x→∞, it suffices to prove that m(x) is decreasing. We have

m′(x) = h[(x+ 1)h−1 − (x− 1)h−1 − 2(h− 1)(x− 1)h−2].

By the mean value theorem, (x+1)h−1− (x− 1)h−1 = 2(h− 1)xh−2
0 for some x0 ∈ (x− 1, x+1).

Hence, since h < 2,
m′(x) = 2h(h− 1)(xh−2

0 − (x− 1)h−2) < 0.

(c) (4.2) is obtained from (2.2). By convexity, (s+ t)h+1 ≤ 2h(sh+1 + th+1), hence

−2h−1(sh+1 + th+1) ≤ −1
2
(s+ t)h+1,

and then
E(σh(t)− σh(s))2 ≤ 1

2
[(2h− 1)s+ 3t](t− s)h ≤ (h+ 1)t(t− s)h,

so we have the upper bound in (4.3).
For the lower bound, let

f(x) = −2h(1 + xh+1) + (1 + x)h+1 + (1− x)h[(2h− 1)x+ 3], 0 ≤ x ≤ 1,
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so
E(σh(t)− σh(s))2 =

1
2
th+1f

(s
t

)
, s ≤ t. (4.6)

We have
f(x)

(1− x)h
= (2h− 1)x+ 3 + g(x),

where

g(x) =
−2h(1 + xh+1) + (1 + x)h+1

(1− x)h
.

Since g(x) → 0 as x→ 1, then

f(x)
x(1− x)h

→ 2(h+ 1) as x→ 1,

and since f(x) > 0 for x ∈ [0, 1), there is a constant ch > 0 such that

f(x) > chx(1− x)h for all x ∈ [0, 1].

The lower bound in (4.3) then follows from (4.6).
(d) The Hölder continuity of σh follows from the right-hand inequality in (4.3) by Kol-

mogorov’s criterion.
(e) From (2.2) we obtain, fixing u, s and t,

R(u, v, s, t) =
1
4
Fu,s,t(v), u ≤ v ≤ s, (4.7)

where

Fu,s,t(v) = (t− u)h[(2h− 1)u+ 3t]− (s− u)h[(2h− 1)u+ 3s]
−(t− v)h[(2h− 1)v + 3t] + (s− v)h[(2h− 1)v + 3s]
+(t+ u)h+1 − (s+ u)h+1 − (t+ v)h+1 + (s+ v)h+1.

Then Fu,s,t(u) = 0 and
F ′

u,s,t(v) = (h+ 1)Gs,t(v),

where

Gs,t(v) = (t− v)h + (t− v)h−12hv − (s− v)h − (s− v)h−12hv − (t+ v)h + (s+ v)h,

v ≤ s ≤ t.

We have Gs,s(v) = 0 and
∂

∂t
Gs,t(v) = h(t− v)h−2Ht(v),

where

Ht(v) = t− v − (t+ v)h−1

(t− v)h−2
+ 2(h− 1)v, 0 ≤ v ≤ t.

(Note that Ht(v) does not depend on s). Then Ht(0) = 0 and

H ′
t(v) = 2h− 3− (h− 1)

(
t+ v

t− v

)h−2

+ (2− h)
(
t+ v

t− v

)h−1

.
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But
(

t+v
t−v

)h−2
< 1 and

(
t+v
t−v

)h−1
> 1 since 1 < h < 2, therefore

H ′
t(v) > 2h− 3− (h− 1) + (2− h) = 0.

Hence Fu,s,t(v) > 0, u < v, so (4.4) follows from (4.7).
For the proof of (4.5) we write R(τ) = R(u, v, s + τ, t + τ) and a = t − u, b = t − v, c =

s− v, d = s− u, e = t+ u, f = t+ v, g = s+ v, k = s+ u. We have from (4.7)

R(τ) = τh+1

{
3
4

[(
1 +

a

τ

)h+1

−
(

1 +
b

τ

)h+1

+
(

1 +
c

τ

)h+1

−
(

1 +
d

τ

)h+1]
+

1
4

[(
1 +

e

τ

)h+1

−
(

1 +
f

τ

)h+1

+
(

1 +
g

τ

)h+1

−
(

1 +
k

τ

)h+1]
+
h+ 1
2τ

[(
1 +

a

τ

)h

u−
(

1 +
b

τ

)h

v +
(

1 +
c

τ

)h

v −
(

1 +
d

τ

)h

u

]}
.

Then (4.5) is obtained by four successive applications of L’Hôpital’s rule together with the
following equalities (we omit details):
(i) the first time,

−a+ b− c+ d = 0, −e+ f − g + k = 0,
(ii) the second time,

3(a2 − b2 + c2 − d2) = 6(t− s)(v − u),
e2 − f2 + g2 − k2 = −2(t− s)(v − u),
−4(−au+ bv − cv + du) = −4(t− s)(v − u),

(iii) the third time,
3(−a3 + b3 − c3 + d3) = −9(t− s)(v − u)(s+ t− v − u),
−e3 + f3 − g3 + d3 = 3(t− s)(v − u)(s+ t+ v + u),
−b(a2u− b2v + c2v − d2u) = 6(t− s)(v − u)(t+ s− 2(u+ v)),

(iv) the fourth time,
3(a4 − b4 + c4 − d4) = 6(t− s)(v − u)[2(s2 + st+ t2)− 3(t+ s)(v + s) + 2(u2 + vu+ v2)],
e4 − f4 + g4 − k4 = −2(t− s)(v − u)[2(s2 + st+ t2) + 3(t+ s)(v + s) + 2(u2 + uv + v2)],
−8(a3u+ b3v− c3v+ d3u) = −8(t− s)(v−u)[s2 + st+ t2− 3(t+ s)(v+ s) + 3(u2 +uv+ v2)],

and the sum of the last three terms is equal to −16(t− s)(v3 − u3).
(f) The covariance given by (2.2) does not have the triangular property which is necessary

for a Gaussian process to be Markovian (see e.g. [42]).
(g) The following result is contained in [3] (Lemma 2.1):
Let χ = {χ(t), t ∈ [0, 1]} be a real, continuous, centered Gaussian process such that for some

h ∈ (0, 2), h 6= 1, and some positive constants c1 and c2,

c1(t− s)h ≤ E(χ(t)− χ(s))2 ≤ c2(t− s)h, s ≤ t.

Then χ is not a semimartingale
Using this result with (4.3) shows that σh is not a semimartingale on [δ, 1] for any δ ∈ (0, 1).

2

5. Some comments

Functional convergence with generalized Gaussian limits for the occupation time fluctuations
of the particle systems without immigration in the cases of long-range dependence (related
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to covariances (1.1) and (1.2)) are proved in [5]. The proofs involve tightness, and a space-
time random field method for identification of a unique limit which is specially useful for non-
Markov processes. The (weak) convergence takes place in the space of continuous functions
C([0, τ ],S ′(Rd)) for any τ > 0, where S ′(Rd) is the space of tempered distributions. It is well
known that this space of distributions is appropriate for convergence results for this type of
systems due to the nuclear property of S(Rd). The same approach may be used for proving
functional limit theorems corresponding to Theorems 2.2, 2.3 and 2.5, obtaining S ′(Rd)-valued
centered Gaussian processes with covariances given by the right hand sides of (2.9), (2.12) and
(2.20). The functional version of Theorem 2.5 requires the Skorohod space D([0, τ ],S ′(Rd)).
The S ′(Rd)-valued Gaussian processes X = {X(t), t ≥ 0} with covariances given by the right
hand sides of (2.9) and (2.12) can be represented as follows: For Theorem 2.2.(1),

X(t) =
(

Γ(2− h)
πα(h− 1)h(h+ 1)

)1/2

ληh(t), t ≥ 0, h ∈ (1, 3/2].

where ηh is the real Gaussian process with covariance (2.1). For Theorem 2.3,

X(t) =
(

V Γ(2− h)
2d−1πd/2αΓ(d/2)(h− 1)h(h+ 1)

)1/2

λσh(t), t ≥ 0, h ∈ (1, 2).

where σh is the real Gaussian process with covariance (2.2). In both cases the spatial struc-
ture is simple (Lebesgue measure) and the temporal structure is complicated (with long-range
dependence).

The real Gaussian process with covariance (1.5) and the S ′(Rd)-valued Gaussian process with
covariance given by the right hand side of (2.20) are not Markov although the approximating
process YT is Markov. This is an example of the fact that the Markov property is not necessarily
preserved under weak convergence.

We noted in Remark 4.3 that the decay rates of the covariances of increments for ηh and σh

are the same as for fBm and sub-fBm. Therefore the immigration does not change the decay
rate of the long-range dependence of the occupation time fluctuations of the particle systems;
only the branching accounts for the difference. On the other hand, the immigration increases
the sizes of the fluctuations by T 1/2 in each case (see Remark 2.4.(a)).

This paper and [4, 5] deal with occupation time fluctuations in the cases of long-range
dependence: d < α for the non-branching system, and α < d < 2α for the branching system.
There are also functional limit theorems in the cases where the temporal structure of the limit
processes has independent increments (without immigration): d ≥ α for the non-branching
system, and d ≥ 2α for the branching system [6]. The main features of the results for the
branching system are: for d = 2α with FT = (T log T )1/2, the limit has the form const.λβ where
β = {β(t), t ≥ 0} is Bm, and for d > 2α with FT = T 1/2, the limit is a truly generalized process,
an S ′(Rd)-valued Wiener process (see [2] for S ′(Rd)-valued Wiener processes). Thus there is
a jump in the size of the fluctuations at the critical case d = 2α, but the spatial structure is
still simple (Lebesgue measure). The size of the fluctuations is the “classical” (central limit
theorem) one for d > 2α, and the spatial structure becomes complicated (S ′(Rd)-valued). The
critical case separates two very different types of behaviors, both spatially and temporally. The
same thing occurs similarly for the non-branching system, the critical case being d = α (recall
also the result of Theorem 2.2.(2) and Remark 2.4(b)). It should be possible to prove analogous
functional limit theorems for the systems with immigration using the methods of [6].

The causes of long-range dependence of the occupation time fluctuations in the systems
with or without branching and no immigration are the types of the particle motion: strict
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recurrence (d < α) in the system without branching, and strict weak transience (α < d < 2α)
in the branching system. In the first case the particles return infinitely often and at arbitrarily
large times to any given bounded interval, each time adding a random amount of time to the
occupation of the interval; and in the second case any given ball is visited infinitely often and
at arbitrarily large times by clans, each time adding a random amount to the occupation of the
ball (a “clan” is a family of particles with eventually backwards coalescing paths); see [4] and
[5] for more details, and [48] for “clan recurrence” of branching particle systems in equilibrium
in the case α = 2. As noted above, long-range dependence disappears at the borders: d = α
(critical recurrence) for the non-branching system, and d = 2α (critical weak transience) for
the branching system. We have seen that the immigration increases the size of the occupation
time fluctuations, and it also modifies the form of long-range dependence (e.g., from covariance
(1.2) to covariance (1.4) in the branching system), but not the decay rate. We have also seen
that the immigration causes long-range dependence on the branching particle process N itself.
Another possible source of long-range dependence in branching systems could be a particle
lifetime distribution with long tail (see [55]).

Non-Gaussian processes and random fields with long-range dependence also appear in ap-
plications (see e.g. [30, 37, 38, 49, 50]. Long-range dependence non-Gaussian processes are
also found in the context of branching particle systems . In the branching system without
immigration, for α = d the occupation time process with FT = T obeys a functional ergodic
theorem, and the corresponding occupation time fluctuation limit is a centered measure-valued
process [6, 52] (see also [21, 35] in the context of superprocesses). This limit is a finite-variance
non-Gaussian process with long-range dependence. The covariance of increments on intervals
separated by distance τ decays like τ−1. Thus, there is a continuity of the results for α < d < 2α
as α↗ d in the forms of the norming and the long-range dependence, but at the border α = d
the limit fluctuation process becomes non-Gaussian. A similar effect should also occur for the
branching system with immigration. In the branching systems with α < d < 2α (with or without
immigration) the fluctuation limit processes are Gaussian because the branching law has finite
variance. With a (critical) branching law in the domain of attraction of a stable law with expo-
nent 1 + β, (0 < β < 1), one finds that for α/β < d < α(1 + β)/β and FT = T (2+β−dβ/α)/(1+β)

(without immigration), the occupation time fluctuation limit process is a centered measure-
valued (1 + β)-stable process with long-range dependence [7].

We have considered branching systems with the assumption of critical binary branching,
which simplifies proofs. It would be interesting to study long-range dependence of fluctuations
for more general branching systems. In the case of general critical finite-variance branching, the
results should be the same with V multiplied by the second factorial moment of the branch-
ing law. A different case from those we have looked at is subcritical branching systems with
immigration (which have equilibrium states). Also, long range-dependence in occupation time
fluctuations of multitype branching particle systems would be interesting to study (see [40] for
fluctuations of such systems).

Occupation time fluctuations of the particle systems without immigration yield fBm and
sub-fBm only with h > 1 (aggregation) [4, 5]. In order to obtain these processes with h < 1
(intermittency) from occupation times of particle systems, it would be necessary to introduce
some kind of interaction between particles (e.g., repulsion). This has not been tried.

Occupation times are relevant for some applications. For example, in air pollution models
(see e.g. [25, 26]) the occupation time of a particle system may represent the accumulated
exposure to suspended particulate matter.

Some models in financial mathematics (e.g. Black-Scholes models) use stochastic calculus
based on Bm or on fBm as guiding processes, and there is discussion among specialists on which
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process should be used. Since sub-fBm is intermediate between Bm and fBm (in the sense
that increments are more weakly correlated and their covariance decays faster than for fBm), it
may be useful to investigate possible applications of sub-fBm in this field. This would require
a stochastic calculus with respect to sub-fBm, in particular a representation of sub-fBm as
stochastic integral with respect to Bm (such a representation can be obtained from [17]). Also,
long-memory stochastic volatilities could perhaps be represented by sub-fBm or other long-
range dependence processes such as those discussed above. Branching mechanisms have been
introduced for stock price models [19], and immigration may also have potential applications in
finance.
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[58] Zhang, M., Functional central limit theorem for the super-Brownian motion with super-
Brownian immigration, (2004), J. Theor. Probab. (To appear).

21


