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Abstract

The notion of degree and related notions concerning recurrence and transience for a class
of Lévy processes on metric Abelian groups are studied. The case of random walks on a
hierarchical group is examined with emphasis on the role of the ultrametric structure of
the group and on analogies and differences with Euclidean random walks. Applications to
separation of time scales and occupation times of multilevel branching systems are discussed.
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1 Introduction

For a Lévy process X on a metric Abelian group, we introduce its degree v as the supremum
over all ¢ > —1 for which the operator power G¢*1 of the Green operator of X is finite (in a
sense made precise in subsection 2.1). If v is positive, we call it the degree of transience, if it is
negative, we call —v the degree of recurrence of X. This extends notions defined in [8]. For a
transient process X, the degree of transience can be characterized as the order up to which the
moments of last exit times Lp (from a ball B with positive radius) of X are finite. For a large
class of recurrent random walks on countable state spaces (at least for those whose transition
probabilities p; have a power asymptotics in t) the degree of recurrence equals the order up to
which the moments of first return times to the origin are finite.

We say that X has degree 4+ (or alternatively, 4~) if X has degree v and G?*! is finite (or
infinite). For example, d-dimensional Brownian motion has degree v~ with v =d/2 — 1.

A definition of k-strong transience for each integer k > 1 was given in [8], which can be
rephrased as follows: X is k-strongly transient if the degree is bigger than k or equal to k™.
(The case k = 1 corresponds to the usual strong transience.) If the degree is either k= or k* then
we say that X is at the border of k-strong transience (if £ € N), or the border between transience
and recurrence (if k = 0). A process with degree k~ is not k-strongly transient and for such a
process the (k + 1)-st operator power G,’f“ of the incomplete potential operator Gy = fot Tsds
(where T is the semigroup of the motion) typically has a subalgebraic growth as t — co. More
generally, we will define operators GgCH), ¢ > —1, which in a certain sense interpolate between
the integer powers of G, and we will investigate the growth of GgVH) as t — oo for various
examples of processes with degree y~.

A versatile class of random walks which (i) covers the range (—1, 00) of degrees, (ii) contains
a wealth of examples with degrees v~ and v+, and (iii) allows a thorough analysis of cases on
the borders, are random walks on hierarchical groups (called hierarchical random walks). They
have their origin in the “light bulb” random walk studied by Spitzer [33] (page 93), and a model
introduced by Sawyer and Felsenstein [32] in the context of genetics. For more background and
references on hierarchical random walk we refer to the survey article [10].

The state space of the hierarchical walks is Qp, the hierarchical group of order N. This is
a countable Abelian group consisting of sequences of numbers in {0,1,..., N — 1} only a finite
number of which are different from zero, with the metric such that the distance between two
sequences is the largest coordinate number for which the respective coordinates are different.

The countable group 2 is useful for the study of the large scale properties of hierarchical
random walks. For the small scale properties it is necessary to pass to a continuum hierar-



chical group (consisting of semi-infinite sequences). Lévy processes on such a group have been
considered in [2, 15, 16, 27].

Hierarchical groups are examples of ultrametric spaces, where the distance d(x,y) satisfies
the strong (or non-archimedean) triangle inequality d(z,y) < max{d(z, z),d(z,y)}. Ultrametric
spaces are qualitatively different from Euclidean spaces; e.g. two balls are either disjoint or one
contains the other. Consequently, a random walk on {2 can leave a closed ball of radius R only
by making a single jump of size greater than R and not by a sequence of small jumps; in this
respect, the hierarchical random random walks behave differently from Euclidean random walks.
On the other hand, some important aspects of the long-time behaviour of random walks as well
as some classes of interacting random walks depend only on their degree and consequently will
be the same for random walks on Euclidean lattices and hierarchical groups of the same degree.
It is therefore of interest to calculate the degree of a random walk on a hierarchical group with
jump distribution in a parametric family in terms of the parameters, and also to investigate finer
properties (such as the growth of GEVH) as t — o0o) for a family of processes all with degree v~

For a given N > 2, 1 > 0, and a sequence (c;) of positive numbers, we consider the random
walk on Qn which jumps distance j with probability proportional to Cj_l/N(j_l)/“, 1=12 ..,
choosing the arrival site uniformly among all sites at this distance. We call this the (p, (¢;), N)-
random walk. The special case c; = 1 gives the (p, (1), N)-random walks, some of whose features
were already studied in [8]. It is known that for a (u, (1), N)-random walk

pe(0,0) ~ t7"h(t),

where h is a function which is bounded away from 0 and oo and is “slowly oscillating” (i.e. h(logt)
is periodic in t). Consequently it has degree (x — 1)~, and the growth of GE“ ) is logarithmic as
t — oo. For a transient (p, (1), N)-random walk and { < p — 1, we will study the asymtptotics
of the last exit time moments IELCBR as R — oo, where Bp is a ball of radius R containing the
starting point.

Let us now turn to the more general (1, (¢;), N)-random walks. We will show that under a
mild condition on (c;), finiteness of G* is equivalent to convergence of the sum c;“ .Forp=1
and p = 2 this amounts to transience and strong transience of the walk. These summability
conditions also play a major role in connection with hierarchical equilibria of one- and two-level
branching populations [9].

With a view towards so-called mean-field limit (see [9, 10]), it is of interest to study the
behaviour of (4, (¢j), N)-random walks as N — oo. It turns out that for a wide class of sequences
cj, the degree of these random walks approaches p — 1 as N — oo. Indeed, we will show that
for 0 < liminfe¢jq/c; < limsupejyi/c; < oo the degree of the (u,(cj), N)-random walk is
p—14+0(1/logN) as N — oo. If limcji1/c; = 1, then the degree of the (u, (¢;), N)-random
walk is g — 1 for all N, and it is (u — 1)™ iff the c;“ are summable. For nondecreasing c¢; such

that > c;“ diverges, the degree of the (y, (¢;), N)-random walk is (©—1)~, and GE”) grows like

const Z;‘:l%gt/ 08N =1 a5t — co. In particular, the (1, (5 +1)7), N)-random walk (with 0 < 3)

j
has degree j — 1, and it has degree (u — 1)~ iff 8 < p~!. In this case, G,E“) grows like const

loglogt for f = p~', and like const (logt)'=P* for 0 < 8 < p~'. Proposition 3.3.1 gives exact
asymptotics for the growth of incomplete potential operator powers in some critical cases.

In subsection 3.5 we investigate the behaviour of the Markov chain given by the distance of
a hierarchical walk to a fixed point in Qp, called distance Markov chain, which is the analogue
of a (Euclidean) Bessel process. We will see that the distance Markov chains of hierarchical and
Euclidean random walks behave differently, even if the underlying random walks have the same
degree of transience/recurrence. For discrete time hierarchical random walks, we will study



the distribution of the maximum of the distance Markov chain between times 0 and n, and its
asymptotics as n — oo, and we will see that for p > 1, N7/# is (asymptotically as N — co) the
right time scale for observing the exit behaviour of a (u, (%), N)- random walk from a closed
ball of radius j. In [9] we study 2-level branching particle systems with a strongly transient
migration on 2n which approaches the border of strong transience as N — 0o, and which leads
to a separation of time scales and to a cascade of quasiequilibria associated to a sequence of
nested balls of increasing radii, in the N — oo limit. The results in subsection 3.5 describe the
appropriate time scale on each ball according to its radius and explain why, asymptotically as
N — 00, only the evolution of the underlying random walk on the ball and on the surrounding
ball of the next radius are relevant. This is the key for the cascade of quasiequilibria obtained
in [9] (see Remark 3.5.11).

Part of the results obtained in the paper were motivated by questions that arise in connection
with occupation time fluctuations and hierarchical equilibria of branching systems studied in
[8, 9]. The equilibrium behaviour and occupation time fluctuations of branching random walks
and multilevel branching random walks provide examples of phenomena in which an essential
role is played by the degree of the random walk, and also by the fine behaviour of the (k4 1)-st
powers of the incomplete potential operator Gy when the random walk has degree k= with & € N.
We will briefly review in Section 4 how the growth of Gf“ and GG¥ as t — oo carries over
to the growth functions in the norming of the occupation time fluctuations of k-level branching
systems (k = 0,1,2). For a-stable processes and ¢/-random walks having degree k~, it is known
from [8] that this growth function is v/tlogt. A case of particular interest, which is not covered
by the results of [8], is provided by the j#-random walks investigated in subsection 3.3. Here,
we encounter a whole family of processes, all with degree k™, leading to the (very) slow growth
functions 1/t(log)?, 0 < § < 1, and v/t loglogt.

Some of the results obtained in the paper have been stated without proof in the survey article
[10].

The paper is organized as follows. Section 2 deals with degree and related notions, Section
3 refers to hierarchical random walks, and Section 4 is devoted to occupation time fluctuations
of branching systems.

2 Degrees of transience and recurrence

2.1 Green operator powers and the degree of a Lévy process

We consider Lévy processes X = {X(t),t > 0} with cadlag paths on S, a Polish space with
(additive) Abelian group structure. We call 0 (€ S) the origin of S. For countable S, X is a
random walk on S in continuous time.

The following function spaces will be used:

Cp(S): continuous functions with bounded support,
By(S): bounded measurable functions with bounded support,
Cgr (9), BJ(S ): elements of the previous spaces with non-negative values.
Let {T},t > 0} denote the semigroup of X, i.e., Typ(x) = E (X (1)), ¢ € Bp(S). Recall that
the potential (or Green) operator of X is defined by

o0
Gy =/ Typdt, ¢ € By(S),
0



and the fractional powers of G are given by

1 o

cﬂwz(/ £ Todt, ¢ >0, (2.1.1)
I'(¢) Jo

provided that the integrals are well defined. Note that GS17¢2 = G<1(G<?) and for ¢ = k integer,

(2.1.1) coincides with the kth (operator) power of G. Recall that the process X is said to be

recurrent iff Go = oo for ¢ € C;f (S), ¢ # 0, and transient iff ||Gy|| < oo for ¢ € ;7 (S) (|| - ||

denotes the supremum norm).

Definition 2.1.1 The degree v of X is defined as
y=sup{¢ > —-1:Glp<oo forall eB(S)} (2.1.2)

If v > 0, we call v the degree of transience of X, and if —1 < v < 0, we call —v the degree of
recurrence of X. The case v = 0 is considered in Definition 2.1.3.

Remark 2.1.2 (a) These definitions extend Definition 2.4.2 in [8] (see Remark 2.4.2 below).
(b) The definition of degree is valid without the Abelian group assumption, but in all the cases
we consider here the space is an Abelian group and the processes are symmetric.

In the transient case we will relate G¢ for ¢ > 1 to moments of last exit times (see subsection
2.2), and in the recurrent case we will relate G¢ for ¢ < 1 to the finiteness of certain moments
of first return times at least in special cases (see subsection 2.3).

If the degree 7 defined by (2.1.2) is finite, it may be that G7*ly < oo or Gl = oo,
@ # 0. In order to distinguish between the two cases and abbreviate statements we introduce
the following terminology:

Definition 2.1.3 For a process X of finite degree 7, we say that it has degree v if
Gy <00, ¢ #0, (2.1.3)

and it has degree v~ if
Gy =o00, ¢#0. (2.1.4)

A process having degree 0~ will be called critically recurrent.

The symmetric a-stable Lévy process on Rd, 0 < a < 2 (called a-stable process henceforth)

has degree v~ with

d
7=l (2.1.5)

We will also consider continuous time random walks on Z? for which the jump distribution is in
the domain of attraction of a symmetric a-stable law and is 1-lattice (i.e. the lattice generated
by all vectors x —y such that the transition probabilities p; (0, z) and p;1(0, y) are strictly positive
coincides with Z¢). These walks will be called (v, d)-random walks for short, and they also have
degree v~ with ~ given by (2.1.5). Indeed, combining a multidimensional local limit theorem
([29], Theorem 6.1) with a moderate deviations argument for Poisson random variables it is easy
to see that the transition probability p; of an (a, d)-random walk satisfies

p:(0,0) ~ const t~ as t — oc. (2.1.6)

Note that within the class of symmetric a-stable processes and of («, d)-random walks the
degree 7 is restricted to [—1/2,00). Obviously, these processes are critically recurrent for d = a.



For Brownian motion (o = 2) on R? and simple symmetric random walk on Z% the degree is
d/2 — 1. By the scaling property of the a-stable process, EOLCBR = R IEOLCB1 for all R, where
EOL%1 < oo for ¢ < . This growth in R willl be compared later on with corresponding results
for certain hierarchical random walks.

A simple asymmetric random walk on Z has degree oco. Also, Brownian motion on an
infinite-dimensional Hilbert space (with nuclear covariance) has degree oc.

Concluding this subsection, we recall the notions of strong/weak transience and k-strong /weak
transience [8] which are closely related to the notion of degree and which play a role e.g. in
connection with multilevel branching particle systems (see Section 4).

Definition 2.1.4 For each integer k > 1, we say that X is
k-strongly transient iff ||G*p|| < 0o for ¢ € B (S9),

and
k-weakly transient iff ||GFp|| < oo for ¢ € Bf(S)

and G*lyp =00 for peC(9), ¢#0.

The case £k = 1 corresponds to the usual strong and weak transience. Definition 2.1.4 is
compatible with (and more streamlined than) the one in [8] (Definition 2.1.1). In [8] we referred
to GF*lp = 0o as “level k recurrence” because it corresponds to recurrence of “level k clans” in
branching systems. Note that k-strong transience implies v > k, and k-weak transience implies
v € [k — 1,k]. Conversely, v > k implies k-strong transience, and v € (k — 1, k) implies k-
weak transience. We shall see in examples that certain critical behaviours occur when ~ takes
an integer value. The a-stable process is k-strongly transient iff « < d/(k + 1) and k-weakly
transient iff d/(k+ 1) < a < d/k.

2.2 Degree of transience and moments of last exit times

In this subsection we give a connection between the operator powers G¢, ¢ > 1, defined in (2.1.1)

and moments of last exit times. Intuitively, this relates to the degree of transience as follows:

the higher the degree of transience, the quicker the process tends to leave a bounded set forever.
For a non-empty Borel set A C S, let L4 denote the last exit time of X from A,

Ly=sup{t>0:X(t)ec A} (G {t>0:X(t) € A} # o).
Proposition 2.2.1 Assume X is transient and for any closed ball K C S,

sup Glg(z) < oo, (2.2.1)
zeK

and for any closed ball C C K° (interior of K ),

;22 Glg(z) > 0. (2.2.2)

Then there exist positive constants a1 and ag such that for all { >0 and x € 5,

aG M e(z) < BuLE < aeGSHig(x). (2.2.3)



The proof is borrowed from [30, 31]. Those papers deal only with processes on R? but the
argument is general.
Proof. Let Fq = inf{t > 0: X(t) € A} (the hitting time of A C S). By the Markov property of
X we have

Glk(x)

Y

E, (1[FC<OO]EX(FC)/O IK(X(t))dt>
inf Gl (y)Py(Fo < 00). (2.2.4)
yeC

V

By the Markov property and transience,

Glg(z) = E,; <]I'[FK<OO]]EX(FK)/O ILK(X(t))dt)

sup Gl (y)P,(Fg < 00). (2.2.5)
yeK

It follows from conditions (2.2.1) and (2.2.2), and from (2.2.4) and (2.2.5) that there exist
positive constants b; and by such that

IN

1P, (Fo <o0) < Glg(z) < 0P (Fg < o) (2.2.6)
for all x.
Again by the Markov property,
E.L¢, :/0 P, (Lo > t)gtC—ldtz/O E.Px ) (Fo < 00)(t*dt, (2.2.7)

since Le > t iff Fo o 6 < oo, where 6; is the shift of paths w : (f;w)(s) = w(t + s). Hence, by
(2.2.6) and (2.2.7) there exist positive constants b3 and by such that

by / E.GLo(X())ct ' dt < E.LS < by / E, G (X (1)) Ct<dt (2.2.8)
0 0

for all x.
Finally, for any closed ball K,

/EG][K ()¢t dt = / /IK (t + 5))dsCt~Ldt

:/ / e (X (s))dsCt< Lt = IE/ e (s))/0 < dtds

= / sSTl g (x)ds, (2.2.9)
0

and (2.2.3) follows from (2.2.8), (2.2.9) and (2.1.1). O
The following corollary is immediate.

Corollary 2.2.2 The degree of transience vy (> 0) is also given by
v =sup{¢ >0: ELCBR < oo forall R> 0}, (2.2.10)

where Br is a centered open ball of radius R. For irreducible transient random walks on a

countable Abelian group,
vy =sup{¢ >0, EL® < oo}, (2.2.11)

where L is the last exit time from 0.

Remark 2.2.3 For transient Lévy processes on R a set like on the r.h.s. of (2.2.10) is con-
sidered by Sato and Watanabe [30, 31].

Conditions (2.2.1) and (2.2.2) hold in all the examples considered in this paper.



2.3 Degree of recurrence and moments of first return times

In this subsection we only consider the case of countable S. We denote the transition probability
of X by pi(x,y). As before, we assume that the walk X is irreducible and (unless stated
otherwise) starts in the origin.

Definition 2.3.1 Consider the holding time

H =inf{t > 0: X; # 0}
and the first return time to the origin

T =inf{t > H : X; = 0}.

For transient X the last exit time L from the origin is the sum of a geometric number of
i.i.d. copies of T' conditioned to be finite, plus and independent copy of H. Hence, in this case
we have for all { > 0,

ELS < oo iff E[T¢|T < o] < oc.

Thus for transient X, the characterization (2.2.11) of the degree of X is equivalent to
v =sup{¢ > 0: E[T%|T < c0] < oc}.
We now ask whether a similar characterization of the degree in terms of moments of first

return times also holds in the recurrent case .
For the rest of this subsection we assume that X is recurrent. Put R =T — H, and

Pt = ]P)[R > t]?
that is, 1 — p is the distribution function of the excursion time length R of X from the origin.
Lemma 2.3.2 Assume rate 1 holding times of X. Then for allt > 0,
t
/ p5(0,0)pr—sds + pi(0,0) = 1. (2.3.1)
0
Proof. We consider the process Y; := 1x,20). The successive times H; < Hz < ... when YV
jumps from 0 to 1, together with the times 77 < 7> < ... when Y jumps back from 1 to 0, form
an alternating renewal process, with the period in 0 having distribution £(H) = Exp(1) and the

period in 1 having distribution £(R). Disintegrating the event {Y; = 1} with respect to the last
jump of Y from 0 to 1 before time ¢ we obtain

t
PY;=1] = / P[H; € (s,s +ds),T; >t for some i = 1,2, ...]
0
t
= / P[H; € (s,s+ds), T; — Hy >t — s for some i =1,2,...]
0
t
= / P[H; € (s,s + ds) for some i =1,2,...]P[R >t — 5]
0

t
= / Ds (O, O) pt*SdS'
0

The proof is complete since P[Y; = 0] = p;(0,0). O



Remark 2.3.3 (a) Assume that for some x> 0 and a slowly varying function #(t),
p:(0,0) ~ t7HL(t) as t — oo. (2.3.2)
Then the degree of the walk is v = u — 1. Indeed, (2.3.2) implies that for each € > 0,
p:(0,0) > cit™#7° and  pg(0,0) < ot HTE (2.3.3)

for finite positive constants cq, co depending on ¢, and sufficiently large t. Hence for all § > 0,
choosing € = 0/2 in (2.3.3) we see that

/ tH1+9p(0,0)dt = 0o and / t*179p(0,0)dt < oc.
1 1

The claim follows from (2.1.1) and (2.1.2).

(b) Assume that p; satisfies (2.3.2) for p € (0,1) (as it is the case for (o, d)-random walks
with d < @ and p = d/a, see (2.1.6)). It follows from (2.3.1) that the Laplace transforms p(\)
and p(\) of p(0,0) and p; are related by

FONFO) = A= 5, (2.3.4)
hence by a Tauberian theorem ([1], Theorem 1.7.6) one has
PA) ~ ATHL(1/N) as A —0 (2.3.5)

for some slowly varying ¢;. Using another Tauberian theorem ([1], Theorem 1.7.2) one infers
that
pr ~ M, (1) as t — oo (2.3.6)

for some slowly varying function ¢,(t). Since

[e.e]
ERS = / peCte T dt, (2.3.7)
0
we obtain from (2.3.6), by a similar argument as in part (a), that
—pu+1=sup{¢>0: ERS < co}.

Since the first return time 7" differs from R only by the exponentially distributed holding time
H, and since the degree of the walk is v = y — 1 we have

—y =sup{¢ > 0: ET® < oo}. (2.3.8)

The next proposition shows that (2.3.8) characterizes the degree of recurrence for all critically
recurrent random walks satisfying the the additional requirement

p¢(0,0) = o(t 1)  ast — oo forall 0 < e. (2.3.9)

Proposition 3.2.4 and its corollary show that an example of such a class of random walks are
the (1, (¢;), N)-random walks (introduced in Definition 3.1.4) where (c;) satisfies (3.2.16) and

Zj cj_1 = 0.

Proposition 2.3.4 For a recurrent random walk satisfying (2.3.9), the return time T has no
moments of positive order.



Proof. We put g; = fotps(0,0)ds. For all s,t > 0 such that p,(0,0) < 1/2 for all » > s, we have
from (2.3.1)

s s+t
1/2 <1- ps+t(07 O) = / pr(0> O)ps—i-t—rdr + / pr(07 0)ps+t—rdr-
0 s

Since p; is decreasing, the first term on the r.h.s is bounded by gsp;, and the second one is
bounded by gs4++ — gs. Hence we obtain

1/2 < gspt + Gt+s — gs-
Using (2.3.9), we have for each 0 < ¢ < 1 and suitable constants c1, ¢y > 0 depending on ¢,

o M2 (=) | 12— aills 1) — ]
9s cy s¢

=c25 F = ((1+1t/s)° —1).

Putting s = t%/(1=2) this turns into

cq t7E/(1729) _ (1 X t—2z—:/(1—25)>€ 1ot/ (1720) _ y=2e/(12) o 4 o

This shows that p; decays slower than ¢t~ for any § > 0, and in view of (2.3.7) completes the
proof. a

The next proposition shows that for u € (0, 1) a less restrictive condition than (2.3.2) assures
at least that the first return time has all moments of order less than 1 — p. This condition
is fulfilled by the (u,(c;), N)-random walks with 1 € (0,1) and (c¢;) satisfying (3.2.16) (see
Proposition 3.2.4).

Proposition 2.3.5 For € (0,1), assume
p:(0,0)7 = o(t*T)  ast — oo forall 0 < e (2.3.10)
(and consequently v < p—1). Then the return time T has all moments of order less than 1 — p.

Proof. Since p; is decreasing, we have from (2.3.1)

t
1>1—-p(0,0) = / ps(0,0)pr—sds > pigs. (2.3.11)
0

From (2.3.10) we have that for each € > 0 there exists a constant ¢ > 0 such that p.(0,0) >
ct~#=¢, and consequently g; > c1t'7#~¢ for some c; > 0. Hence because of (2.3.11) we have for
each ¢ > 0 and a suitable constant c.

pr < c P> 0. (2.3.12)

Consequently, for all § € (0,1 — p), putting € = /2 in (2.3.12), we have from (2.3.7)

00 o0
ERI—H—0 _ / (1—p— 5)t(1—“_5)_1ptdt < const/ t1-9/24 -+ const < 0.
0 1

Then it suffices to recall that T'= H + R, where H is exponentially distributed and therefore
has moments of all orders. O

10



Remark 2.3.6 Put v =y — 1.

(a) For p € (0,1) the power asymptotics (2.3.2) implies the equality (2.3.8) (Remark 2.3.3
(b)), which in this case characterizes the degree of recurrence in terms of moments of first return
times (Remark 2.3.3 (a)).

(b) For = 1, the “weak” power asymptotics (2.3.3) (right part) still guarantees (2.3.8), see
Proposition 2.3.4.

(c) For p € (0,1), the “weak” power asymptotics (2.3.3) (left part) implies that the return
time 7" has all moments of order less than 1 — 4 = —v (see Proposition 2.3.5). Hence in this
case we have at least the bound

—y <sup{¢ >0: ET¢ < oo} (2.3.13)

(d) It would be interesting to know whether the characterization (2.3.8) holds in general for
recurrent random walks with degree ~.

2.4 Incomplete potentials

We now define the incomplete potential operator G; which together with its powers plays a basic
role in occupation time results.

Definition 2.4.1 For a process X on S we define the operator

t
G :/ Tspds, ¢ € By(S), (2.4.1)
0

where {T;} is the semigroup of X. Moreover, we denote by GF,k = 2,3,... the (operator)
powers of Gj.

When GFp < 00, GFlp — coast — 0o, p € B} (S), ¢ # 0, the order of the growth of Gy
determines the appropriate normings for the occupation times in k-level branching populations.
This is discussed in section 4.

For the a-stable process on R? (having degree v = d/a — 1) and integer k > 0 ,

Gf+1 ~ klogt for =k (equivalently a = k%fl), (2.4.2)
Gf“ ~ Kth=7 for k—1<~vy <k (equivalently k%l <a< %) -
and
Ty ~ kit~ 0 as t — 0. (2.4.3)

In these formulas s stands for a positive constant which is different in each case, and formulas
(2.4.2) and (2.4.3) are symbolic. For example, the precise meaning of Gy ~ kt~7 is fs pGupdp ~
Kkt YH (@, ), @, € Cp(S), where p is the Lebesgue measure on R? and H(p, 1) is some positive-
definite bilinear form [8]. The “critical” cases v = k are associated with slowly varying growth
of GfH.

We use the following notations:

a; < b ast — oo if ay/b; and b;/a; remain bounded as t — oo, and

a; x by ast — oo if ay/by and by/ay are o(t°) as t — oo for all € > 0.

The same notations will be used also for discrete indices j = 1,2, .. in place of t.
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Remark 2.4.2 (a) For transient processes it is useful to consider the operator R; defined by
R =G — Gt, t>0

(see [28]). It is easy to see that if Ry < t77 as t — oo for some v > 0 (called transience of
order «y in [8]), then the process is transient with degree v~, and if Gy < ¢t™7 as t — oo for some
v € (—1,0) (called recurrence of order —v in [8]), then the process is recurrent with degree ™.
(b) Recurrent processes such that Gy = o(t°) as t — oo for all ¢ > 0 are critically recurrent.
Indeed, for any ¢ € (—1,0) and 0 < & < —(,

2k+1

0o > i
/ tThodt < Z(Qc)k/ Tipdt < const 2(24)’“(2’”1)5 < 00.
1 k=0 2k k=0

An important case is Gy ~ const logt (which was called critical recurrence in [8]).

For processes with degree v, from the viewpoint of occupation times it is necessary to compute
the growth of GGY 1 and of G for an integer k with y+1 < k < y+2 (cf. section 4). However,
also in the case of non-integer ( > v + 1 it is interesting to study the growth of the operators

1 t

G,Eogo = / s Tupds, t>0, p € By(S) (2.4.4)
') Jo

for ¢ > 0, ¢ # 0. Indeed, the following lemma and its corollary show that for integer k > v+ 1,

and a large class of walks, ng) captures at least the growth of G¥. Note that if Ty < t~ O+,

then

®) _ [ PO i >y,
G = { logt if k=~+1. (2.4.5)
Lemma 2.4.3 For k=1,2,... and ¢ € B} (S), ¢ #0,
(a)
(k‘) t t t t+s14+... 481
0 < GFo—GVyp < / dsl/ dssy .. / dskl/ Tspds. (2.4.6)
0 0 0 t
(b) Assume Ty =<t~ for some v > —1. Then for integer k >~ +1,
ng)gp < GFp < ng)go + const tF=OFD), (2.4.7)
and therefore
k .
k) | <Gf it k>vy+1,
Gt { ~GE A k=ny L (248)
Proof. For k=1, Gyp = Ggl)go, so there is nothing to prove. For k > 2,
t
Gy = / T.G* Yo ds, (2.4.9)
0

since from (2.4.4) the derivatives w.r. to t of both sides of (2.4.9) coincide by the semigroup
property.

12



Iterating (2.4.9),

(k) t t—s1 t—s1—...—Skp_1
G, g0:/0 d81/0 dsz.../o AsiTs, 4.+, P- (2.4.10)

On the other hand,
/dsl/ dssy .. /dskTSl_f__._J'_sng, (2.4.11)

Subtracting (2.4.10) from (2.4.11) we find

t t t t
0 < G,’fcp—ng)@ < / dsl/ dSQ"'/ dskl/ dsipTs, 4. +s,p-  (2.4.12)
0 0 0 t—81—...—Sk—1

Substituting s = s; + ... + s in the r.h.s. of (2.4.12) we have (2.4.6).
Under the assumption of part (b), (2.4.7) is immediate from (2.4.6), and (2.4.8) follows from
(2.4.5) and (2.4.7). 0

Corollary 2.4.4 For~v > —1, an integer k > v+ 1 and ¢ >0, ¢ # 0,
(a) if Typ =<t~ O+ then

k—(v+1) ;
E t if k>~+1,
Gip =< { logt i keyt1, (2.4.13)

(b) if Typ o t=O+D) | then Grp th=(y+1)

An example for (a) in the preceding corollary is given by the (y + 1, (1), N)-random walks
(see (3.2.3) and Remark 3.1.5), and an example for (b) is provided by the (y+1, (¢;), N)-random
walks with ¢;j41/c¢; — 1 (see Proposition 3.2.4).

Definition 2.4.5 For discrete S (as in the case of the hierarchical random walks studied in the
following section) and ¢ > 0 we put

©_ 1 [t _ A
g _F(C)/o s 71ps(0,0)ds = G141 (0), >0, (2.4.14)
1 [oe)
g F(C)/o s ps(0,0)ds = G*11,(0). (2.4.15)

For the («,d)-random walk (having degree v~ with v = d/a — 1), (2.1.6) implies

gg%q) ~ const logt,

gfo ~ const t"O)  for ¢ >4+ 1. (2.4.16)

3 Random walks on the hierarchical group

3.1 Hierarchical random walks

Definition 3.1.1 Let N be an integer > 2. The (countable) hierarchical group of order N is

defined by
Oy ={z = (z1,22,...) : & € Zn,x; # 0only for finitely many i},
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where Zy = {0,1,..., N — 1} is the cyclic group of order N, with addition componentwise
mod(N). In other words, Qp is the direct sum of a countable number of copies of Zy. We

endow Qy with the translation-invariant hierarchical distance | - | defined by
o —y| = 0 if z=y,
= maxficao £y} if z#uy.

Note that d(z,y) = | — y| is an ultrametric.

Definition 3.1.2 (r;-random walk). We consider hierarchical random walks {&,} on Q defined

n
by & = Y. mi,n = 1,2,..., where n;,i = 1,2,... are i.i.d. random variables in Qy with
=1

1=
distribution

r

P[n:y]:]\m_léy]'\r_l), yeQy, y#0, Plp=0]=0, (3.1.1)
and {rj,j =1,2,...} is a probability distribution on N = {1,2,...}. Note that the random walk
jumps from x to y such that |z —y| = j > 1 by first choosing distance j with probability r; and
then choosing y uniformly on the sphere of radius j with center at z (since N7~1(N — 1) is the
number of points at distance j from a given point). We assume that r; > 0 for all j, hence these
random walks are irreducible.We call r;-random walk the random walk defined by (3.1.1). We
will introduce descriptive names for special choices of 7, and in some cases simplified names for
easy identification; the name r;-random walk always refers to the general case.

Remark 3.1.3 (a) The rj-random walks are the most general “symmetric” random walks on
Q) in the sense of the uniform choice of a point at a given distance.

(b) Qn can also be represented as the set of leaves of a tree Tyy. Each inner node of Ty is
at some level (or depth) j > 1, and the leaves are at level 0. Each inner node at level j has
one neighbouring node at level j + 1 (its parent) and N neighbouring nodes at level j — 1 (its
children). For a leaf x, let aj(x), j = 1,2,... denote its chain of ancestors. The r;-random walk
jumps from the leaf x with probability 7; to a leaf uniformly chosen among all the leaves which
descend from aj(x) but not from a;_q(z). (c) The case N = 2 corresponds to the “light bulb”
random walk in [33]. A criterion for transience/recurrence in this case was given in [6], and
extended in [17] allowing N to depend on the index of each component. Sawyer and Felsenstein
[32] used random walks on Qy to study genetic relatedness in a spatially structured population.
It would be interesting to study hierarchical random walks with random N (i.i.d. numbers of
outgoing edges from each inner node), and non-symmetric hierarchical random walks.

The n-step transition probability p™(z,y) of the rj-random walk {¢,}, which can be ob-
tained by Fourier methods [32, 18, 26], is given by

f’I”L o fn
p™(0,y) = (S — 1)N'—ﬁq‘| FN-1) Y Ak nz1 yean\{o),  (3.12)
k=ly[+1
pM(0,0) = o,
where
k—1 r N 0o
szzrj—N_1:1—rkN_1—er, k> 1. (3.1.3)

j=1 j=k+1
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A continuous-time random walk X = {X (¢),¢ > 0} on Qu corresponding to {&,}, with unit
rate holding time, i.e., with transition probability

o0
tn
pt(07y) = eit Z ﬁp(n) (07 y)v t> 07 Yy e QN: (314)
n!
n=0
is given by
o~ Pyt 0 o—hyt
pt(O,y) = (50,|y| - 1)W + (N - 1) 7 t>0, yey, (315)
J=lyl+1
where h; =1 — f;, i.e.,
N o0
hj:rjﬁfz ri, j=1,2,..., (3.1.6)
=741
[18, 26]. The rj are obtained from the hy by
N -1 (N-1)2% = hy
rh=—xh— N ';HN]., k=1,2,.... (3.1.7)
]:

Definition 3.1.4 ((u, (¢j), N)-random walk). We consider r;-random walks (3.1.1) with jump
probabilities 7; of the form
Cj—1

NG-1/u’
where p is a positive constant, {c;j,j = 0,1,...} is a sequence of positive numbers and D is a
normalizing constant. This random walk as well as its continuous time version with unit rate
holding times will be called (1, (¢;), N)-random walk, emphasizing the three elements that define
the jump probabilities. (It will be clear in each case whether the time is continuous or discrete.)

rj=D i=12,..., (3.1.8)

Remark 3.1.5 For fixed N and p # 1, a (i, (1), NV )-random walk is the same as a (1, (¢;), N)-
random walk with ¢; = n; N’ (4=1)/1 This transformation is useful because we also are interested
in the behaviour of (y, (¢;), N)-random walks as N — oo, for sequences (c;) not depending on
N. In this so-called hierarchical mean field limit (see [9] and references therein), the reciprocal
of the constant u plays an important role as a scaling parameter concerning separation of time
scales (Remark 3.5.11).

Example 3.1.6 The (1,(c¢/), N)-random walk (called c-random walk in [8]) has jump probabil-
ities

._<1 C)(C)H i=1,2 here 0<c<N (3.1.9)
Ty = ~N)\N , J=12,..., where c ) 1.
In this case h; defined by (3.1.6) is given by
NQ—C c\Jj—1
h':7<—) =12, 1.1

This random walk will sometimes be called ¢/-random walk for brevity. Note also that by
Remark 3.1.5 a (1, (¢/), N) random walk is the same as a (u, (1), N) random walk with

log N

"7 log(N/e)’
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3.2 Degrees of hierarchical random walks

Since Qp is countable and the random walks are irreducible, it suffices to consider, instead of
the operator G¢ defined in (2.1.1), the number ¢(¢) defined by (2.4.15). The following formula
with discrete-time transition probabilities can also be used:

o0

| ST+ n)
© — (n)
g () g P (0,0). (3.2.1)
n=1
Remark 3.2.1 (a) We have from [8] that the (1, (¢/), N)-random walk has degree v~ with
logc
= — 2.2

Equivalently (see Remark 3.1.5) the (u, (1), N)-random walk, p > —1, has degree v~ with
v = p — 1. Note that the range of degrees of the (1, (¢’), N)-random walks is (—1,00). In this
sense this class is richer than the class of a-stable processes on R? (and («, d)-random walks).

(b) Another consequence from [8] is that for a (1,(c/), N)-random walk with degree v we
have

pe(0,0) ~ const t~(FYp,, (3.2.3)
gfyﬂ) ~ const logt,
gég) = <=0 for ¢ >~ +1, (3.2.4)

()

where hy = h;"’ is a slowly oscillating function (recall that géo is defined by (2.4.14)).

Remark 3.2.2 (a) Comparing (2.4.16) with (3.2.4) we see that (1, (¢/), N)-random walks and

(o, d)-random walks with degree v (i.e. ¢ = N'=%/%) have the same order of growth of gt(o for
¢=vy+1L
(b) The (1, (¢?), N)-random walks can also be compared to a-stable processes in terms of
the decay of the potential operators. For positive integer k < v + 1, the k-th power Glf\,yﬂY of
the potential operator Gy of this hierarchical random walk has a kernel of the form (see [8],
(4.2.2))
G?V,,Y(O, ) = const N~ 1#I(=k/(y+1))

where 7 is the degree (3.2.2). If y = g — 1 (hence d > ak), this can be written as
G’f\w((),x) = constp(z) @k,
where
p(z) = NIV,

p(x) is the “Euclidean radial distance” of x from 0, so that the volume of a ball of radius p grows
like p?. Therefore the powers of the potential operator of the (1, (¢’), N)-random walk and the
respective ones for the a-stable process have the same spatial asymptotic decay.

(¢) For the (i, (¢7), N)-random walk with 0 < ¢ < N/ the degree is

uw—14 ploge/log N
1—ploge/log N

T=N = (3.2.5)

Hence vy — p—1 as N — oo, more precisely, yv = p— 1+ O(1/logN) as N — oc.
In the case p = 2, since the degree equals 1 for Brownian motion (o = 2) on R* or simple
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symmetric random walk on Z* (see (2.1.5)), the N — oo limit behaviour of this hierarchical
random walk can be viewed as corresponding to Euclidean dimension d = 4. This case plays
a role in the behaviour of two-level branching systems discussed in [9]. Hierarchical models
“around dimension 4” also play a prominent role in statistical physics [10].

We turn now to transience properties of the (i, (¢;), N)-random walk. We will sometimes
write py, G€, Gl’f, D with a subscript or superscript (1) when we need to emphasize the dependence
on fi.

We have, from (3.1.6) and (3.1.8),

hj = rjsj, where (3.2.6)
N R N I & 61
%= N—1+F SN T i1 ZN(FWW]_M"'"
J i=j+1 J i=j+1
therefore p
o j—1 R
h; = DN(jil)/# where dj_1 =cj_155, j=1,2,.... (3.2.7)

We need conditions for finiteness of the powers G¢ in terms of the h;.

Proposition 3.2.3 For any ¢ > 0,

o) 1 0 1
1 Gé — GC < . < i —— < 0, 3.2.8
(1) (n) S iff ; Njh§ o iff jz(:) Nj(qu)/ud]C. o | )

where h; and d; are given by (3.1.6), (3.2.7) and (3.2.8).
(2) In terms of the c; in (3.1.8),

G =G < — < 00, 3.2.9
() = o Z NJ(u 9 /uc > ( )
provided that
1 1 & Cs
lim sup — Z r; < oo (or equivalently  limsup — Z WZJVH < 00). (3.2.10)
g—ee Ti S i—eo G500

A sufficient condition for (3.2.10) is

lim sup < NVn, (3.2.11)
j—oo Cj

and hence for large N it suffices that limsup cjq1/c; < oo.
J

Proof. (1) We have, from (3.1.5) and (2.1.1),
1
G =Gy =(N-1) Z = (3.2.12)

Then the first part of (3.2.8) is obvious from (3.2.12), and the second one follows from (3.2.7).
(2) (3.2.9) and (3.2.10) follow from part (1) and (3.2.6). 0
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The defining quantities of the (u, (¢;), N)-random walk (3.1.8) are p, the sequence (c;) and
N, but conditions for finiteness of the powers of G are more conveniently established by the
sequence (d;) defined by (3.2.6) and (3.2.7). The ¢; can be obtained from the d; by (3.1.7),
(3.1.8) and (3.2.7); e.g., for p =1,

N-1 (N-12 . <= d;
cj = dj — 73 NQJZW‘ (3.2.13)

An obvious consequence of the previous proposition for the (u, (¢;), N)-random walk is

1
GF <ooi 7 <% (3.2.14)
=1 J
or in terms of the c¢;,
oo
1
G'<ooiff ) < (3.2.15)
7=1 CJ
provided that
1 > C;
J T = Jj+1

Note that (3.2.6) and (3.2.7) imply d; > ¢;, therefore 37, 1/c% < oo implies G* < oc.

We have seen that the ¢/-random walk with degree v actually has degree v~. Now we ask
for existence of (1, (c;j), N)-random walks of degree y. The next proposition and its corollary
give an answer.

Proposition 3.2.4 Consider a (i, (¢;), N)-random walk such that

infe; >0 and lim 2 =1, (3.2.17)
j j—oo 5
Then for each € > 0
p¢(0,0) = o(t *) as t — oo (3.2.18)
and
p:(0,0)7! = o(tF¢) as t — oo. (3.2.19)

Proof. 1t is not difficult to show from (3.2.6) and (3.2.7) that (3.2.17) implies

d:
lim 2 = 1. (3.2.20)
j—oo dj
We have from (3.1.5) and (3.2.7) that
(0,0) = constiN_j ex —DLt
P = L P\ NG/
J:
S Constz; N exp <_K]\7(]_1)/Ht) y
J:
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where ¢(< 1) can be chosen arbitrarily close to 1 and K is another constant. The latter
expression can be rewritten as

oo
' 1
—j K-
const 2:1 N7 exp < KN(j_l)/#, t) ,
j:

where 1/ (< p) can be chosen arbitrarily close to p. The estimate (3.2.18) is now immediate
from (3.2.3), where the constant v appearing there is chosen as p/ — 1. The estimate (3.2.19) is
proved in an analogous way. O

Corollary 3.2.5 Under the assumptions of Proposition 3.2.4,
(a) the degree of the random walk is v = p— 1, and it is v© iff > 1/0? < 00,
J

(b) if w < 1 then the return time to 0 has all moments of order less than 1 — p,
(c) if p =1 then the return time to 0 has no moments of positive order.

Proof. (a) is immediate from (3.2.18), (3.2.19), (2.1.2) and by noting that condition (3.2.11)
holds.

(b) follows from (3.2.19) and Proposition 2.3.5.

(c) follows from (3.2.18) and Proposition 2.3.4. O

Next we give an example of a walk satisfying the assumptions of Proposition 3.2.4.

Example 3.2.6 (j’-random walk). Consider a (u, (c;), N)-random walk with p > 0 such that
d; defined by (3.2.6) and (3.2.7) is given by

di=@G+1)P° j=0,1,..., where §>0. (3.2.21)

We call this a j%-random walk, referring to d; rather than to c¢;. The degree of this random walk
isy=p—1,and it is 4" if 8> 1/p, and v~ if 8 < 1/p. Since ¢; also behaves like (j + 1)” (see
(3.3.1) below), we could consider the random walk with ¢; = (j 4+ 1)? instead of (3.2.21), but
this would complicate the exact asymptotics derived in subsection 3.3 because they are more
directly related to d; than to c;.

The next result shows in particular that for a large class of sequences (c;) the degree of the
(i, (¢j), N)-random walk approaches p as N — oc.

Proposition 3.2.7 Consider a (i, (c;), N)-random walk, denote its degree by v and put

_ . Cj+1 ..o oGl
c:hmsupi, g:hmmfi.
j—o00 Cj J—00 Cj

(1) If ¢ < NY#, then
uw—14 ploge/log N
1 — ploge/log N

(3.2.22)

(2) If c < N'V/# | then
s 1+ ploge/log N
~ 1—ploge/log N

(8) If0 <c<¢<oo, theny=p—1+0(1/logN) as N — oco.

(3.2.23)
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Proof. (1) For each a € (¢, N'/"), the (i, (a?), N)-random walk has degree (see (3.2.5))
(@ _ b—1+ploga/log N
~ 1—ploga/logN
Let 0 < ¢ < v+ 1. Then, by (2.1.1), (3.2.9) and by the definition of the degree =,

> ; < 0. (3.2.24)
- NJ(N—C)/#C§

Since ¢; < Ka’ for all j = 0,1,... and a suitable constant K > 0, (3.2.24) implies

1
zj: NI fngic =
Consequently, ¢ < 4@ 4+ 1. Tt follows that v < ~(®), and since a is arbitrary, the assertion
(3.2.22) follows.
(2) is proved in an analogous way, and (3) is immediate from (1) and (2). O
We now pass to last exit times. The following results describe the behaviour of moments of
the last exit time Lp, from a closed ball Br of radius R for transient ¢J-random walks.

Proposition 3.2.8 For a (u, (1), N)-random walk with ;1 > 1, n > 1 and Br a closed ball of
radius R centered at 0,

oo +1 R
1 B (N — 1) 1 N
/0 tF"*P,(0, Bg)dt = I'() (NG i1 — Ty =1\t ) - (3.2.25)
where Py(0, Bg) := > _,cp,, pt(0,2).
Corollary 3.2.9 Under the conditions of Proposition 3.2.8,
(1) for fized N,
R
it (Nt 1 (N
EoLy, =T'(n) (NG g1 — Ty g =1\ as R — oo, (3.2.26)
(2) For fized R,
EoL/ ' =T (MY N 2.9
olp, = (M)W_l) (77“) as — 00, (3.2.27)
and in particular
(3) 1
EoL'LL N
Pro o 2 45 N — co. (3.2.28)

Eo Lyt o

Proof of Proposition 3.2.8 and Corollary 3.2.9: We sketch the proof of (3.2.25).
Writing ¢ = nNW=D/8 b = ba/ = with b = (N? — ¢)/N(N — 1) and a = ¢/N (see (3.1.10))
we obtain from (3.1.5)

/t“lPtOBR Z/t“lpt()md
0

r€BR

[e%s) R
() 1 NN - 1)
Y [(N - 1) - Nigli—Dp Zl Nmg(m=1)u

.]: m=

R 0o 1
m—1
VoD LN D 3 lea(j_W]
m= j=m
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Computing the summations and substituting the expressions for a and b leads to (3.2.25).
The results (3.2.26) and (3.2.27) are obtained from (3.2.25) and (2.2.3), and (3.2.28) also
follows from the previous results. O

Remark 3.2.10 (a) Consider a ¢/-random walk on Qy and an a-stable process on R? having
the same degree v. We see from the previous corollary that, for { < v, EOLCBR grows like R

for the a-stable process on R?, and it grows like (N/¢)SHtDE for the ¢/-random walk on Qy. If
the degrees of the two processes coincide (i.e., ¢ = N'=%/%) then (N/¢)¢F = p* where p = N/4
is the Euclidean radial distance from 0 (Remark 3.2.2(b)). This shows that a ¢/-random walk
takes on the average a longer time to leave an “Euclidean” ball than an a-stable process with
the same degree.

(b) Part (3) of Corollary 3.2.9 shows that there is separation of time scales on balls of hierarchical
radius R and R+ 1 as N — oo. The analogue to (3.2.28) is true for the a-stable process on
Rd, on balls of “Euclidean” radius N#/¢ and NFE+1)/d (corresponding to hierarchical distance
R and R+ 1) as N — oo. Indeed, on appropriate time scales, one sees certain features of
Euclidean random walks related to separation of time scales. See e.g. Cox and Griffeath [5]
where diffusive clustering in the two-dimensional voter model is shown based on such features
of two-dimensional simple random walk.

(c) For the ¢/-random walk, from (3.1.9) we have 7; = (N/c)r;j+1. Hence a jump of size j is
N/c times more likely than a jump of size j + 1. Therefore, as time flows the points visited by
the random walk form a clustered pattern: the walk spends some (long) time jumping within a
closed ball of radius j, and forming a cluster there, before jumping to a point outside the ball,
and beginning a new cluster within another ball of radius j, which by the ultrametric structure
of Q is necessarily disjoint from the previous ball, and so on. This behaviour is analogous to
that of the Weierstrass random walk on the lattice studied in [23, 24, 25]. The one-dimensional
Weierstrass random walk has step distribution with density function

1
"’za 3 a5(x — AVY) + 8(z + AV, z€R,
n=0

where a, b and A are constants, a > 1, b > 0, A > 0. When b is an integer the walk stays on a
lattice. (The characteristic function of the step distribution is Weierstrass’ example of a function
which is everywhere continuous and nowhere differentiable.) The d-dimensional Weierstrass
random walk is an obvious extension.

3.3 A special class of hierarchical random walks

We know that (u, (1), N)-random walks have degree (u— 1)~ and gt@ defined by (2.4.14) grows
logarithmically. In this subsection we will construct a class of hierarchical walks with degree
(= 1)~ for which ggu ) grows only sublogarithmically. To this end we consider (i, (c;), N)-
random walks defined by (3.1.8) such that ¢; < ¢;y; for all j. It can be shown easily from
(3.2.6) and (3.2.7) that this assumption implies d; < dj41 for all j and

N d; N 1

ﬁ < g < N _1 + Nl/ﬂfl fOI‘ all - (331)

If ¢; is non-decreasing, then liminfe¢;1/c; > 1. Hence Proposition 3.2.7 implies that the
degree is greater or equal to pr — 1. If we assume in addition that 1/d§L = 00, then (3.2.14)

implies that G* is infinite, hence the degree is (u — 1)
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To state the next proposition in a compact way, we put
1 2 3
Y = Gu0,0), £ =G}0,0), £ = (G2G)0,0). (3.3.2)

Proposition 3.3.1 Assume dj < d;i1 for all j, and
1
> - = 00 (3.3.3)
P

(a) In case p=1,2 or 3,

plogt/log N

N -1
t(u)NW Z i as t—o0
(W) j=0 J

where D\, is the normalizing constant in (3.1.8).
(b) For general p and gt(”) defined by (2.4.14),

nlogt/log N
w N1
9; ~ NDE Z 7 as t— o0.
(w) §=0 J

(The upper limits in the sums are understood as integer part.)

Proof. Denote (see (3.1.5) and (3.2.7))
N1 w

P = pi"(0,0) = N (3.3.4)

o exp{— 55 Dot}

" =" 3 : (3.3.5)
=0

We will omit the superscript and subscript () but the value of 1 will be clear in each case.
(a) Case p=1. By (3.3.4), (3.3.5) (3.3.2) and (2.4.1),

N —1 Dt

dv
exp{—N—’jt}
ND J, o

G4(0,0) = N

gsds, where (]t:Z

The Laplace transform of ¢ is

and g(A) — oo as A — 0 by (3.3.3).
Write

where
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with
log A

A= ——2=— A< 1.
Q(N) og N 0<A<
Since . ) .
RAO<YT X 5 < Liyam = L
J>Q(N)

where L is a constant, then
gA\) ~ Fi(A\) as A—0.

Write
Fi(A) = Ji(A) + J2(N),
where
1
J1(>\) - 5
J<Q(\N)

d.
1 1 AN
2(\) (ANJ+dj c@) > (ANJ + dj)d;

J<Q(N) J<QM)

e

IN
L)

Since inf; d; > 0,
[N < LA > NI < LIAN®WY = [y,
J<QM)
where L and L; are constants, then Fj(\) ~ Ji(\), and therefore

gA) ~Ji(A) as A—0.

Let
Hit)y= Y —, t>0,
i<
so J1(A) = H(1/\). H(t) is slowly varying at oco. Indeed, let = > 1, then

H(tx) ,
H(t) =1+ ;Rt,x(])a

where

d'Q(t ) <j < Q((tx)‘l)].

Rt,w (]) = =
ke i

Since the sequence d; is non-decreasing,

o1y Q)™ = Q™) . |
ZRtm(j) < QO =} < og(tx) —logt _ logux —0 as
i dou-1 Q) logt log t

hence
H(tx)

H(t)

A similar argument works for 0 < x < 1.

—1 as t— oo.
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By a Tauberian theorem ([1], Theorem 1.7.1)

and the conclusion follows.
Case p = 2. Using the formula

t t t T
GtQ(Ov 0) = / / Dsrdsdr = 2/ / Ds+rdsdr
0 Jo 0 JO

D1 )
G%(0,0) = NDQ/ /q5+rdsd7’ where ¢; = Z—NJ/Q

we have

NJ
Let

t 2t 1 2t d;
Mt:/o qs+tds:/t qgsds = Zj:N]/t exp{—Ws}ds

d; d;
B Z exp{— =t} — exp{—/=2t}
a Ni/2d; '

J

The Laplace transform of M; is

— 1 1 1
M) = .
;dej (A+ CA+2 >

NJ/2 NJ/2
1

Zj: (ANJ/2 + d;)(ANI/2 + 2d;)

== F1<)‘) +F2(A)7

where
Y = 3 !
1 = /2 . /2 '
<o) (ANI/2 4 dj)()\NJ/ + 2d;)
1
(N = - .
/21 . /2 N’
S0 (ANJ/Z 4 dj)(ANI/2 + 2d;)
with loe A
_ _9l08A
Q) = 210gN, 0< A<
Since ) ) )
B =5 2 Wi S Layew = b
J>Q(N)
then .
M) ~Fi(A\) as A—0
Write



where

1 1
F<QM) I
1 1
B = Y ( | | ) 2)
1200y VANIZ 4+ dj)(ANI2 4 2d5) - 2d;
= -y A2N7 4 3d;ANI/2
i< 2(AN3/2 + d;)(AN3/ +2dg)dj

Since
[J2(A)] < L<A2 YN HA D Nj/2> < Li(AENOW 1 ANQW/2) = [,
J<QN) J<QN)
then Fy(\) ~ J1(\) and therefore

Let 1 1
H=3 > &
Ji<QM)

so Ji(A\) = H(1/X). H(t) is slowly varying at oo (as above), and the conclusion follows by
follows by the Tauberian theorem.
The case p = 3 is proved similarly, using the formula

t pr 00
GG = 2/ / / Dstr+ududsdr.
0 Jo JO

(b) The proof is analogous to that of part (a) for 4 = 1, hence we will only give a sketch
showing a step which is different.
Proceeding as above we obtain from (2.4.14), (3.3.4) and (3.3.5),

1 N—11 [Pt
ggu) = / QSdSa
L(p) N Dw

where

— =1 Z exp{ NJ/H t}'

The Laplace transform of ¢; is given by

q(A\) =T'(n) Z M =T(p)(F1(N) + F2(V)),
j

where ) )
Fi(\) = Z —— B\ = Z —_—
il Yz i/
J<Q(N) AN/ - dy) i>Q(N) (AN + )
with log A
_ . log
Q) = Mlog N’ 0<A<l,

25



and Fy()\) is bounded, so g(A) ~ T'(u)F1(\) as A — 0.
Write
Fi(A) = Ji(A) + J2(N),
where A
d — (ANI/H 4 dj)»
()\Nj/“ + dj)“d? '

A=Y 4 B = Y

J<QM) 7 J<QMN)

We show that J2(\) is bounded.
Case p > 1: By convexity,

(a+b)* — b <207 tgt 4 (2071 — 1), a,b > 0.

Using this inequality with a = ANY/# and b = d; we obtain

ou—1y\p NI (2#‘1 _ 1)
= 2 ‘ +t SN . (3.3.6)
1200y LN dyyedy (NI 4 dj)m

Case 0 < p < 1: Using the obvious inequality
(a+ b —-b'<a', a,b>0,

with a = ANJ/H and b = d; we obtain

- NI
| Jo(\)| < : ) (3.3.7)
2 G G

Inequalities (3.3.6) and (3.3.7) imply that J2(\) is bounded in both cases.
Therefore G(A) ~ I'(u)Ji(A) as A — 0, and the rest of the proof is like that of part (a) for
pw=1. O

Remark 3.3.2 (a) In [8] we derived exact asymptotics for the growth of the incomplete po-
tential operators Gy for recurrent ¢/-random walks. Unless ¢ = 1, these walks have degree < 0
(see (3.2.2)) and hence behave differently from the critically recurrent walks inverstigated in
Proposition 3.3.1 (case p = 1).

(b) The proof of Proposition 3.3.1 for u = 1 provides a form of approximation for a class of
divergent series, including the series Y n™% 0 < s < 1, related to the Riemann Zeta function
[20].

Using the well known formulas

n —
nlﬁ

1 “ 1
lewlogn and leﬂNl—ﬁ for € (0,1) as n — oo,
j= =

we obtain the following results from Proposition 3.3.1:

Corollary 3.3.3 The (u, ((j + 1)?), N)-random walk (with 0 < 3) has degree v = p — 1, and

it has degree v~ iff 3 < p~'. In this case, gﬁ“) grows like const loglogt for B = p~', and like

const (logt)' =P for 0 < B < u~'. Note that these growths have a similar pattern as (2.4.2)
and (2.4.16) for the a-stable process and the («,d)-random walk, and (3.2.4) for the ¢?-random
walk, except that t is now replaced by logt.
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The j?-random walk defined in Example 3.2.6 is a special case for Proposition 3.3.1, and we
obtain from it as an ingredient for our discussion of occupation time fluctuations of j2-branching
random walks (subsection 4.2) the following exact asymptotics:

p=12: GH <oo f01r[3>l
G~ NDM Lloglogt for B = ,1“

G~ (V=27 (logt)!=#8 for0< g < 1

t NDF(1—8)(log N)(1—18) \108 pw (3.3.8)
p=3: G < oo for 3> 2,
GG~ ND3 Lloglogt for 0=z
31 38 _
GG ~ NDS((173B))(10gN)1735 (logt)'=38 for 0 < B < %

(Recall that D* = (D'

(“)7/'L = 17273)

3.4 An occupation time limit

The incomplete potential operator G; defined by (2.4.1) is also the norming for occupation time
limits of Darling-Kac type [7] for recurrent random walks. For the critically recurrent random
walks of subsection 3.3 we have the following result:

Proposition 3.4.1 Let X = {X(t),t > 0} be the continuous time version of the (1,(c;j),N)-
random walk with c; < cjy1 for all j in the recurrent case (Z d L' = oo where d; is given by

(3.2.6), (3.2.7)). Then for any function F : Qy — RY with bounded support,

ND ¢
P — / FY(s)ds<z| —1—¢e* x>0, (3.4.1)
[(N - 1) ZyEQN F(y) nglogt/logNdj ! 0

as t — 0o, where D is the normalizing constant in (3.1.8).

Proof. Using (3.1.5) we have for A > 0,

71')\(33', y) = /0 ei)\tpt(x7 y)dt

o

1 1
= (0p|p—y — 1 N -1 —_—.
(%012~ )N|x7y‘()\+h‘;r)—y|) + ( )sz—g:/—i-l Ni(X+ hj)

By (3.2.8), mx(z,y) — o0 as A — 0, and by (3.2.7),

[ee)
S ma(wy)Fly) = ()3
rey = ANIT + NDd] 1
1 > 1
F — N -1 - .
+y§v <y)|: ANIz=yl NDd|:chy\71 + ( ) . Z_: ANJI + Nde_l
J=lz—y|+1

We know from the proof of Proposition 3.3.1 with = 1 that

1 —log\/log N
. ~ t — A—0
ANJ + const d; cons ; d; as A=

where the right-hand side is slowly varying as A — 0. The result then follows from Theorem 1
of [7]. O
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Remark 3.4.2 (a) In the case of d-dimensional simple symmetric random walks, for d = 1 the
norming is t'/2 and the limit is the truncated normal distribution, and for d = 2 the norming is
log ¢ and the limit is the exponential distribution [7]. Hence, form the point of view of occupation
time the critically recurrent random walks in Proposition 3.4.1 behave like 2-dimensional simple
symmetric random walks.

(b) Recall that the recurrent ¢/-random walk with ¢ < 1 behaves differently from the random
walks above (Remark 3.3.2(a)). In particular, in contrast with Proposition 3.4.1 the continuous
time ¢/-random walk with ¢ < 1 does not satisfy an occupation time result as above. Indeed,
condition (A) of [7] is satisfied with the norming g(A) = >_,1/(AN J 4+ const ¢/) (denoted by
h(s) in [7]), and by Theorem 2 of [7], if there existed an occupation time limit distribution as
t — oo, then g()\) would necessarily be of the form g(\) = A=*L(A~!) for some a,0 < a < 1,
and slowly varying L(A~!), and by a Tauberian theorem we would have Gy ~ t*L(t)/T'(a + 1)
as t — oo. But it is shown in [8] (Lemma 3.1.1) that Gy ~ const t~7h; where v is the degree
(3.2.2) (-1 <y < 0), and hy is the function

he= Y (ba?~1)7(1— e M), £ >0,

j=—o00
where a = ¢/N and b = (N? —¢)/N(N —1), and this function is slowly oscillating but not slowly

varying.

3.5 Distance Markov chain

Some properties of random walks on Qx depend only on the distance from 0, which we study
in this subsection. This is more easily done in discrete time. We exemplify with the ¢/-random
walk (with g =1 for simplicity) to show explicit results.

Definition 3.5.1 Let {,} be the rj-random walk on Qx defined by (3.1.1) and let
Zn = |&n- (3.5.1)
{Z,} is a Markov chain on Ny = {0, 1,2, ...} called distance Markov chain.
We denote the transition probability of {Z,} by pi; = P[Z,41 = j|Z, =1].
Proposition 3.5.2 The transition probabilities p;; are as given as follows:

(1) rj-random walk:

bij = Tjs 7>,
N -2 r >
- i .
7“1+--'+7"i71+7“z'N_1=1—N_1—'Z 5, J=1i(#0), (poo=0),
Jj=i+1
1 .
T’im7 0<yj <y,
1 .
"INEI(N 1) Voo

(3.5.2)
(2) ¢ -random walk:
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c\J—1 L
(N) ) J > 2,

|
) G- G R ) e -,
|
|

c \i—1 __. c ch\i-lo ]
o) (-5 () 5 <
(NZ) N 1 N N NZ_]’ 0< 7 <u,
i-1 1
(i) e 0=7j<i.
(3.5.3)

Proof. The proof relies on the ultrametric property: |z| < |y| = |y — x| = |y|, and |z| = |y|, = #
y = |y — x| = |y|. We prove (3.5.2):

j >i: A jump of {Z,} from i to j is the same as from 0 to j.
j =1 (#0): This happens in two ways:

(i) foreach k =1,...,i—1, {&,} jumps to a point with the same [-coordinates, [ = k+1,... 1,
and different k-coordinate as the previous point, which occurs with probability rx, and all
such points are favorable, or

(ii) {&,} jumps to a point with i-coordinate different from that of the previous point and from
0, which occurs with probability 7;, and there are N'~!(N — 2) favorable possibilities out
of N'=1(N —1).

0 < j<i: {&} jumps a distance i from the previous point, which occurs with probability
7;, and there are N9~1(IN — 1) favorable possibilities out of N*71(N — 1).

0 = j < i: This is as the previous case with one favorable possibility out of N*=}(N — 1).

(3.5.3) is immediate from (3.5.2). O

We next state without proof some elementary results that follow directly from Proposition
3.5.2.

Proposition 3.5.3 Let 7; = inf{n : Z, > j}, j > 1, and T; = first exit time of {Z,} from i
(starting at i). Then

(1) rj-random walk:

Jj—1 n 00
Polrj =n] = (Z n-) Zri, n=12..., Ey(r) = 23017"1 (3.5.4)

]P)z[T’z :’I’L] = pzil(l—pii), n = 1,..., EzTZ = (355)

Pofr; = n] = (1 - (;)“)n_l (%)H, n=1.2,.... Eorj)= (f)j_l. (3.5.6)



N\’ N -1
BT = (c> N1+1/c)—2 (8:57)

Remark 3.5.4 For the ¢/-random walk we have from (3.5.3) that p;; ~ 1 for large ¢ or large
N, and for every 4, pi;y1/pii—1 = ¢ and Z;’iiﬂ Pij/ Z;;%)pz-j =c¢(N—-1)/(N—-c)=1 (resp. >
1,< 1) iff ¢ = 1(resp. > 1, < 1). It is interesting that these quotients are independent of
i. This shows that the walk tends to stay at the same distance from 0 and the value of ¢
determines the tendency to go away from or towards 0. (3.5.7) shows that the walk stays at
distance 7 an average of the order of (IV, /c)t steps before making a jump to another distance.
Since Y% pij = (N/e)t — 1) > j—iy1Pij> in one step from 4 the distance chain is (N/c)* — 1
times more likely to stay within distance ¢ from 0 than it is to jump to a larger distance from 0.

Proposition 3.5.5 For the ¢/ -random walk, consider the expected distance from 0 of {Z,} after

o0
one step starting from i, i.e., Dy = > jpij. We have

7j=1
N
Dy =
0 N _¢
, c\i—1 c (N —¢)(Nt—1) _
D; = < _ T , 0 3.5.8
H(N) [N—c Ni(N —1)? ' (3:58)
Forc=1,
1
D; i>0. (3.5.9)

Y NN 1)

Corollary 3.5.6 (1) For c>1, D; > i for all i.
(2) For c < 1,D; <1 iff

i > Ly(c) = IO;N(log<10<%:i)2>>. (3.5.10)

Proofs of Proposition 3.5.5 and Corollary 3.5.6: The calculations use (3.5.3) and the standard
summation formulas

S r— (n+ a4 nant?
ij] = (1-%‘)2 ’
j=1
o n n+1
. nx" — (n— 1)z
ij] = CESE , O<z<l.
j=n
For i = 0:
o .
c c\Ji-1 c\N ¢/N 1 N
Dy = (1_7) (7) :(1_7)7 - _ _
0 N jz_:l] N N) c(1-—¢/N2 1-¢/N N-¢
For 1 > 0:

o = () st ()]
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1M8

IS 7j—1 Is I —1 i-1 R
) () S
1] (N) * ( NOANE ;‘7

H-y)
) v ()]

:{(c

c i c z+1 c i+2
+ (1- N>¥ — /ivzc/zv) -

c c \i~ —iN' 4 (7 — 1
+ ( N) 2) e N(N—(1)21)N+

.+(c>l*1 c (N —c¢)(N* —1)
= i — — . .
N N —c Ni{(N —1)?
The term in square brackets is equal to

cNi{(N —1)2 — (N —¢)?(N* - 1)
(N — c)Ni{(N —1)2 ’

and the numerator equals N[c(N — 1)2 — (N — ¢)?] + (N — ¢)2, which is positive for all i iff
c¢(N —1)2 > (N —¢)?, iff ¢ > 1. Hence for ¢ > 1, D; > i for all .
For ¢ < 1,D; < i iff N[(N —¢)? — ¢(N — 1)?] > (N —¢)?, iff

- 1 o (N —c)?
log N g(N—C)Q—C(N—l)Q

:LN(C). g

Remark 3.5.7 (a) Since for ¢ > 1 (i.e. for non-negative degree of the walk) the drift is positive,
in this case {Z,,} is a submartingale. For ¢ < 1, {Z,,} behaves like a submartingale for i < Ly (c),
and when it exceeds Ly (c) it stops behaving that way because the drift becomes negative. Note
that Ly(c) — oo as ¢ /' 1. In the case of (Euclidean) d-dimensional Brownian motion (i.e.,
¢ = N'72/4 see Remark 3.2.2(a)), {Z,} is the analogue of a Bessel process, but Bessel processes
do not behave the way {Z,} does. This exhibits a qualitative difference between hierarchical
random walks and Euclidean processes, which is due to the ultrametric structure of Q.

(b) For ¢ < 1, let

Tw(e) = [Ln(0)] +1,

i.e., Ty (c) is the time of the first jump over the threshold Ly (c) where the drift of {Z,,} becomes
negative. Then, from (3.5.6) and (3.5.10),

1
lim E = .
N—oo O(TTN( )) 1—c¢
We give next some results on the maximal process 2 := max Z,,n=1,2,....

1<m<n

Proposition 3.5.8 For j > 1,
(1) rj-random walk:

i\"  /im1 \"
Po [Z, = J] = (Zn) - (Zn) , (3.5.11)
-1 \"
Po[Z:>4]=1- (Z m-) . (3.5.12)



(2) ¢/ -random walk:

Proof.
(1)

By (3.5.4),

SO

hence

Py (7 =] = (1 - (%)] i (1 - (;)“)n, (3.5.13)

PolZ:>4] = 1- (1 - (JCV)HY. (3.5.14)

PolZ, =71 = PolZy 25,251 2 1+ BolZ, 2§, 251 < J]

n

PolZy 1 > 41+ PolZy > 4, Zy 1 < j].

and (3.5.11) follows.
(2) (3.5.13) and (3.5.14) are special cases of (3.5.11) and (3.5.12). O

The next corollaries are easy consequences (see Remark 3.1.5 for Corollary 3.5.10).

Corollary 3.5.9 Forj > 1,
(1) rj-random walk:

(2) ¢ -random walk:

Po(Z = j] ~ (ZJ: T,) as n — oo. (3.5.15)
i—1
Py [Z} = j] ~ (1 - (;)JY as n— 0o (3.5.16)

Corollary 3.5.10 For the (i, (), N)-random walk with p > 1,

(1)

(2) Forj =1,

0 > 1,
lim Py [ 2y, <3) =4 Ve iff n{ = 1, (3.5.17)
J 1 < 1
. * _ _ einja l= ja
]\}g»noopo [ZLNj/“J B 4 N { l—e ™, £=7j+1. (3.5.18)



Remark 3.5.11 Corollary 3.5.10 shows that NJ/# is the right time scale for observing the
exit behaviour of a (u, (7), N)-random walk from a closed ball of radius j. Asymptotically as
N — o0, only the closed ball of radius j and the surrounding closed ball of radius j + 1 are
relevant. In [9] we consider the cases p = 1,2 and we study the behaviour of branching systems
on a sequence of nested closed balls of increasing radii in 2, which due to the behaviour just
described lead to separation of time scales (see also Remark 3.2.10(b)) and, as a consequence,
to a cascade of quasiequilibria as N — oo.

The following result explains why it is easier to compute probabilities for Z than for Z,.

Proposition 3.5.12 7', n=1,2,... is a Markov chain with transition matriz Q = (¢;;) given
by
0, J<i,
Gij = 2k=1Ths J=1, (3.5.19)
Tj’ j > i>

Proof. Assume Z =i. Then

o _ { iff |77n+1|§ia
ntl 7‘+k7 k>1 iff |77n+1’:Z+k',

where 7,41 is the (n + 1)st step of the random walk {,}, independently of Zi,...,Z,. Then
the form of @) is obvious. |

Remark 3.5.13 Proposition 3.5.12 reflects the fact that in an ultrametric space all interior
points of a closed ball are at the “center”. Clearly, Euclidean random walks do not have the
property in this proposition because it matters where inside the ball the jump starts from.
However, it is worthwhile to mention a behaviour of simple random walk on Z? which has
certain features of separation of time scales, with close connections to the Erdos-Taylor theorem
(see [5] and references therein): Consider the ball B with radius R centered around the origin.
For all 0 < a < o/, and large ¢, the walk starting in x € B,a/2 is at time % “nearly uniformly”
distributed on B,.r /2, independently of the starting position.

We now give some results on the moments of Z,, and the rate of escape for of the ¢/-random
walk.

Proposition 3.5.14 (1) For the ¢/-random walk and for all n > 1 and any M > 0 (M not
necessarily an integer),

S (G )50 ()0 e

7j=1
> i jy n1
EozM < n¥ DA <;> (1 - (;) > , (3.5.21)

and

j=1
(2) .
lim ~EozM =o. (3.5.22)
n—oo n
(3)
.
lim — =0 a.s. (3.5.23)
n—oo n
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Proof. (1) Let a = ¢/N. By (3.5.13),

Eo(Zp)" = > M [(1—d)" — (1 —a?™)"]
j=1
= ig%ﬂ L) S0y
j=1 k=1

which is (3.5.20).
To obtain (3.5.21) we use the obvious inequalities

]E()ZTJLW < ]EO(Z;;)M7

and

n n

. . . . ) _a',l k—1
(@1 —a)) S (1= ) (1 — @) = (@ - Dal(1—a) 1Y <1 ’ )

1—al
k=1 k=1
< n(at=1)d/(1 - a)" L

(2) (3.5.22) follows from (3.5.21) by dominated convergence.
(3) (3.5.23) follows from (3.5.21) by Chebyshev’s inequality and the Borel-Cantelli lemma. O

Remark 3.5.15 (a) The transition matrix (3.5.19) of Z for the ¢/-random walk is

0, | j<i
qij = 1- (C/N)Za ) ] = iv
(1 —¢/N)(c¢/NY~1, j >4,
(n)

and the n-step transition matrix Q™ = (g,

;) 1s given by

b j < 7:7
¢’ ={ (1= (/N ’ j=1, (3.5.24)
(1= (¢/N))" = (L= (¢/NY=H)n, j > .

(b) Proposition 3.5.14 (3) means that the rate of escape of the ¢/-random walk is 0. The following
result, which is more precise than (3.5.23), is obtained using (3.5.24):

[01og(c/N)| 1481
. N og(c/N)] — 5.
Py[Z,; > dlogn] 1+L(510g(c/N)Jn as n — 0o (3.5.25)

for all § > 1/log(NN/c), and this implies for any § > 2/log(N/c),

Py[Z,, > dlogn i.0.] =0. (3.5.26)

4 Occupation time fluctuations of branching systems

In this section we apply the results on the operator Gy obtained in subsection 3.3 to derive
asymptotic results for the occupation time fluctuations of branching systems. To keep the
presentation self-contained, we first give a short review of the subject.
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4.1 Incomplete potentials and growth functions

Multilevel branching systems were introduced by Dawson and Hochberg [11] and they have been
studied by several authors [8, 9, 12, 14, 19, 21, 22, 34]. In addition to the individual particle
branching there is an independent branching of families of related particles (2-level branching),
and this idea can be extended to higher levels of branching. The main difficulty in dealing with
these models is that the independence of behaviour of individual particles no longer holds due
to the higher-level branchings.

Here we assume that the group S is locally compact with countable base, Haar measure p, and
the process X has stationary independent increments which are symmetric and have a strictly
positive density with respect to p. In the analysis of large time occupation time fluctuations of
k-level branching particle systems on S (where k = 0 corresponds to absence of branching), a
basic problem consists in finding a norming a; such that the occupation time fluctuation

1 [t

— [ (X —EX,)ds (4.1.1)

Q¢ 0
has a non-trivial limit in distribution as t — oo, where Xs in the empirical measure of the particle
system at time s. Under appropiate assumptions on the system (suitable initial conditions,
critical binary branchings), it turns out that EX; = p for all ¢, and in the cases of recurrent and
of k-weakly transient motion the form of a; is dictated by the order of the growth of operator
Gy defined by (2.4.1) and its powers as t — oco. Precisely, a; is determined by G for recurrent
motion, by G? for weakly transient motion, and by G} (or G?G) for 2-weakly transient motion.

Occupation time fluctuation limits of up to 2-level branching systems were investigated in
[8], to which we refer the reader for more information and details. For the O-level and the 1-level
particle systems the initial condition was taken to be a Poisson random field with intensity p.
The 1-level system has a “Poisson-type” equilibrium state, and for the 2-level system the initial
condition was taken to be a Poisson random field of “2-level particles” whose intensity is the
canonical measure of the equilibrium state of the 1-level system. The moments of this canonical
measure involve the potential operator G [8] (Appendix), and this implies that one has to deal
with G?G rather than G3 (e.g. (3.3.8)). A different initial condition that can be assumed for
the 2-level system is a Poisson random field with intensity measure Js, p(dz), and this would
lead to G3 in place of G?G. (In case R; defined in Remark 2.4.2 (a) decreases like t =7 for some
v > 0, then G7G and G$ have the same order of growth, see [8], Lemma 2.4.2.)

It is shown in [8] that for each k-level branching system, if the growth of Gy, G2, etc., is given
by an increasing function f;, then the norming a; for the occupation time fluctuation (4.1.1) is

(| t fsds>1/ " (112

For k-strongly transient motion a; is the “classical” noming a; = 1/2.
For the a-stable process on R? (with no branching),

1—d/2 for a>d,
ar =4 (tlogt)'/? for a=d,
t1/2 for a<d.

Note that ¢t1=%/2 — ¢1/2 a5 o\, d, so there is a discontinuity in the order of the growth at
a = d, and for this value of a the “critical” fluctuations of the occupation time are bigger than
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t1/2. The critical case corresponds to v = 0, where 7 is the degree of the a-stable process given

by (2.1.5).
For Brownian motion (o = 2) on R? and the 0-level system (no branching):
$3/4 for d=1,
ar =4 (tlogt)'/? for d=2,
t1/2 for d > 3,

[3, 13]. The same pattern is repeated for the 1-level branching system (individual particle
branching) 2 dimensions higher [4], where the critical case corresponds to v = 1, and for the
2-level branching system (individual branching and family branching) 4 dimensions higher [8],
where the critical case corresponds to v = 2.

In the general setting of branching systems on locally compact Abelian groups the t — oo
limits of the occupation time fluctuations are Gaussian random fields described in detail in [8].
The Gaussian property is due to the finiteness of the variance of the branching laws. A class of
infinite variances branching laws leads to stable random fields [8].

4.2 Occupation time fluctuations of j’-branching random walks

The occupation time fluctuation limits of branching systems of ¢/-random walks are given in
[8]. A different situation occurs for the class of hierarchical random walks in subsection 3.3. For
illustration we consider the j%-random walk (Example 3.2.6, dj = (j+ 1)8, > 0). We obtain
the following result from (3.3.8) and (4.1.2) for p = 1 (0-level system), p = 2 (1-level system)
and p = 3 (2-level system):

t2(logt)1=1A/2 for B <1/p,

a; = { (tloglogt)!/? for B=1/pu,

t1/2 for 5 >1/p.
The forms of the limit Gaussian random fields of the occupation time fluctuations can be obtained
from [8] (Theorems 2.2.1 to 2.2.3), and the constants can be computed from (3.3.8). For example,

for the O-level system with transient motion (8 > 1,a; = t'/2) the covariance kernel of the limit
Gaussian field, obtained from (3.1.5), is

bla9) = 25 | (0 = 1060 + (B = 1)lo =0l = (V= 1) Iglj—ﬁ} ,

where D is the normalizing constant in (3.1.8) and ((-) is the Riemann Zeta function. For the
1-level system in the critical case (8 = 1/2,a; = (tloglogt)'/?), the covariance kernel of the limit
Gaussian field is a constant (= (N — 1)/ND?), hence the occupation time fluctuation limits in
all regions of 2y are perfectly correlated.
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