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Abstract

In this article we provide lower and upper bounds for the expectation of the product
of two random variables. These bounds are sharper than those in the Cauchy-Schwarz
inequality and even in the Holder inequality. We also derive a monotone property
for the covariance between infinitely divisible random variables. Our results might
be used in checking whether the correlation structure assumed for the simulation is

consistent.

Keywords: Sharp bounds; Cauchy-Schwarz inequality; Holder inequality; Covari-
ances; Infinitely divisible random variables; Simulation
AMS 2000 Subject Classifications: Primary 60E15; secondary 65C05

1 Introduction

In many recent studies, more than one response variable is assumed to be observed
on each of the experimental units. One example of this kind of data is found in
Regan and Catalano (1999) where they analyze the joint risk of malformation and
low fetal weights incurred by increased dosage levels. Another interesting example is
the set of data obtained by Feagan et al. (1995) to evaluate the antiflammatory drug
methotrexate for patients with chronically active Crohn’s disease. Here the efficacy
of the drug was measured by using two instruments: the Crohn’s Disease Activity

Index and the Inflammatory Bowel Disease Questionnaire.
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Since there might be nonignorable dependence among the response variables if
they come from the same subject, it is generally hard to construct the likelihood
function based on the observed data. For analyzing such data, we usually rely on
the generalized estimating equations (GEE) approach which is a variant of the quasi-
likelihood method. This approach simply specifies marginal models for the outcome
variables and their correlation structure instead of specifying the complete joint dis-
tribution for those dependent observations. One may refer to Liang and Zeger (1986)
and Zeger, Liang and Albert (1988) for details of GEE.

Although asymptotic properties of GEE estimators are well known, their finite-
sample behaviors are generally unknown and must be investigated through a Monte
Carlo simulation. For this, we have to specify the underlying parameters upon which
investigations will be made. However, unlike the parameters in marginal models,
correlations among the outcome variables cannot be specified arbitrarily between —1
and 1 if they have different families of distributions. This can be easily understood by
noting that a normal and a Poisson variable can never have a correlation coefficient of
1. Consequently, it may well be interesting to find the upper and lower bounds for the
correlation coefficient between the random variables when their marginal distributions
are specified as different.

Once marginal distributions are specified, our problem is equivalent to finding the
bounds for the expectation of the product of two random variables. As we shall see
in the next section, our results are stronger than the Caushy-Schwarz inequality and

even the Holder inequality.

2 Main Results

For two random variables X and Y with finite second moments, the Cauchy-Schwarz
inequality says
|B(XY)| < [E(X*)EY?)]'?,

where the equality holds if and only if there exist real numbers a and b not both zero
such that P{aX + bY = 0} = 1. But, there might be a question about the bound



when X and Y are not proportional to each other or when their marginal distributions
are of different types. In this section we provide lower and upper bounds for E(XY)
which are sharper than the Cauchy-Schwarz bounds.

Throughout this section all the random variables referred to are assumed to be
defined on a fixed probability space (€2, F, P). A random variable X is said to be
simple if it can be represented as a finite sum of the form X = " x;14,, z; € R,
A; € F, where {A;} forms a finite partition of Q. I, denotes the indicator function
of a set A. For a distribution function F', let '~! denote the quantile function of F.

We begin with the case of simple random variables.

Lemma 2.1 For simple random variables X and Y with distribution functions F'

and G, respectively, we have
E(FY(U)G (1 -U)) < B(XY)<E(FYU)G(U)), (2.1)
where U is a Uniform(0,1) random variable.

Proof. Write X =" z;la, Ai={X =z;} and Y = Z?:l yilp,, B; ={Y = y;},
where {A;} and {B;} form finite partitions of 2. We may assume —oco < z1 < x5 <
o< xp <ooand —oo <y < Yo < -k < Y, < 00. Also, we write

pij=P{X=x,Y=y;},i=1..m; j=1,..,n,
¢ = P{X <z} = ZZpkj, i=1,...m,

k=1 j=1
7 m
r;=P{Y <y;} = ZZpil, j=1,...n.
=1 i=1
First, we prove the upper inequality in (2.1) by using Abel’s method of summation
(see pp. 194 of Apostol, 1974). Observe that for u € (0,1),

F_l(u) = inl(Qi717Qi] (u)’ G_l(u) = Zyjl(rjflfﬂ(u%
i=1 j=1

where qo = ro = 0. Since 33;_, Tigr 1.00)(w) = Lo,q1(w), applying Abel’s method to

the expression of F~1(u) leads to
m—1

Fﬁl(“) =Tm — Z(xiJrl - xi>I(quJ (u)7 u € (07 1)'

i=1



Similarly, we have

G u) =yn = > (i1 — Yj) o) (w), u € (0,1). (2.2)
j=1
Thus,
m—1
EFNU)GHU)) = Zmyn — IEmZ Yj+1 = Y75 — Yn Z(%‘H — T;)qi
Jj=1 i=1
m—1n—1
+ (ix1 — ) (Yj41 — y;) min{q;, 7}
=1 j=1

Also, applying Abel’s method to the expressions for X and Y leads to

m—1 i n—1 J
X =z, — Z(mi-i-l - ‘TZ) ZIAm Y = Yn — Z(yj-i—l - yj) Z[Bl’
i=1 k=1 j=1 =1

from which we get

n—1 m—1
E(XY) = @mYn—Tm »_Ujs1 = U)7T5 — Un Y (Tis1 — 2:)g;
j=1 i=1
m—1n—1 7
+ (i1 — 23) (Y1 — Z Zpkz
i=1 j=1 k=1 i=1

E(F—1 U G—l(U)) — B(XY)

(i1 = ) (Y51 —yg){mm{qum} Zzpkl] > 0,

k=1 =1

1=

H

<.
Il
—

since ¢; > 375,y Y-y o and 5 > Y3 3 P
On the other hand, from (2.2) we have

n—1

G_l(l - U) = Yn — Z(yj-i—l - yj)I[l—Tj,l)(u)a u € (Oa ]-)a

=1



and thus

n—1 m—1
E(FT UG (1=U)) = Zmn—Tm (U1 = U)75 — Yn D (Tix1 — 25)g;
j=1 i=1

m—1n—1

+ Z Z Tiy1 — (y]-i-l - y]) maX{Qz + T] 1> O}

=1 j=1

Therefore,

m—1n—1 i j
= (@i — ) (Y — vy) {max{%‘ +ry— 1,0} =) Zpkl} <0,
i=1 j=1 k=1 I=1
since ¢; +1;j — 22:1 Z{Zl pr < 1. This completes the proof. O

Theorem 2.2 Let X and Y be random wvariables with distribution functions F' and
G, respectively. Assume that E(X?) < oo and E(Y?) < co. Then, we have
_[E(X)E(Y?)]? < B(F-1(U)G1(1 - U)) < B(XY)
< E(FHU)GTHU)) < [E(XP)EY?)]?,

IN

where U is a Uniform(0,1) random variable.

Proof. The lower and upper inequalities are nothing but the Cauchy-Schwarz in-
equalities since F~1(U) £ X and G-1(U) £ G1(1-U)2Y. By % and 2 (p > 0)
we denote weak convergence and convergence in L, respectively. Since simple ran-
dom variables are dense in L?(2, F, P), there exist simple random variables X,, and
Y,, such that X, Lj X and Y, L—2> Y as n — oo. For each n, let F,, and G,, be the
distribution functions of X, and Y,,, respectively. Then, by Lemma 2.1, for each n,
we have

E(F, ' (U)G,'(1-V)) £ E(X,Y,) < E(F, ' (U)G,(U)). (2.3)

n

Since F, = F, F;'(u) — F~'(u) except for at most countably many u and thus
F7YU) % F~Y(U). Also, note that

n

Tim B(F,; (U))* = lim B(X2) = B(X?) = E(F(U))? < o



12

These imply that {(F,1(U))*}2, is umformly 1ntegrable and thus that F W) =

F~Y(U). Similar arguments yield that G, (U) e YU) and G} (1-U) Cies 11—
U). Therefore, we have -1 (U)G-Y(U) % F-Y(U)G-1(U) and E-1 (UG (1-U) &
F~Y(U)G7(1-U), which again implies that E(F,,*(U)G,(U)) — E(F~Y(U)G~Y(U))
and E(F; Y (U)G,'(1-U)) —» E(F~Y(U)G7(1-U)). Likewise, X,,Y,, L, XY and so
E(X,Y,) — E(XY). Hence, letting n — oo in (2.3), we have the desired result. O

The new bounds for F(XY') in Theorem 2.2 are sharper than the Cauchy-Schwarz
bounds. For instance, let Uy, Uy and U be Uniform(0,1) random variables and take
X = U and Y = UJ, where o, 8 > 0. Then E(F~Y(U)G'(U)) = E(U**?) =
(a+ B +1)7%, which is less than [E(X2)E(Y?)]Y/? = [(2a + 1)(28 + 1)]7¥/2 whenever
a # [

In Theorem 2.2, it is obvious that E(F~Y(U)G~Y(U)) = E(F'(1-U)G7(1-0U))
and E(F"Y(U)G (1 -U)) = E(F'(1 —U)G™Y(U)) by change of variables. Since
XL FYU)and Y £ G-Y(U) £ G-1(1-U), the corollary below follows immediately
from Theorem 2.2. In particular, F~'(U) and G~'(U) are not negatively correlated
while F~1(U) and G~*(1 — U) are not positively correlated. This is easily verified by

considering independent variables, X and Y, in Theorem 2.2.

Corollary 2.3 Under the assumptions of Theorem 2.2, we have

(a) —[var(X)var(Y)]'/? < coo(F~(U),G7*(1 — U)) < cov(X,Y)
< coo(F~Y(U),G7H(U)) < [var(X)var(Y)]'/?,

(b) coo( F~Y(U),G'(1-U)) <0< cov(FHU),G(U)).

The result of Theorem 2.2 can be easily extended to the case of the Holder in-
equality. The proof is similar to that of Theorem 2.2.

Theorem 2.4 Let X and Y be random variables with distribution functions F' and
G, respectively. For p > 1 and ¢ > 1 with 1/p+ 1/q = 1, assume that E|X|P < oo
and E|Y|? < co. Then,

—(EIX|P)P(E[Y|)Y < E(FH(U)GTH (1 - U)) < B(XY)
< E(F-YU)G YU)) < (E|X|P)V/P(E|Y|9)V4,



where U is a Uniform(0,1) random variable.
Theorem 2.4 informs us that E(F~(U)G7'(U)) can be small enough to satisfy
E(F-HU)GHU)) < mt{(BIX])P(EY])Y p> 1> 1,1/p+1/q =1},

provided that X and Y have finite moments of all positive orders.
If X and Y are both nonnegative random variables, then the moment conditions

in Theorems 2.2 and 2.4 are not necessary.

Theorem 2.5 Let X and Y be nonnegative random variables with distribution func-

tions F' and G, respectively. Then,
E(FT(U)GTH(1-U)) < B(XY) < B(F{(U)GY(U)),
where U is a Uniform(0,1) random variable.

Proof. Let X,, and Y,, be nonnegative simple random variables such that X, (w) 1
X(w) and Y, (w) T Y(w) as n — oo for all w € Q. For each n, let F,, and G,, be the
distribution functions of X,, and Y,,, respectively. Then, by Lemma 2.1, for each n,
we have

E(F, N (U)G, (1 -0)) < E(X,Y,) < E(F, (V)G (U)).

n

Since F,(z) | F(x) for all z € R, F,;Y(u) T F~'(u) for all v € (0,1) and thus
< FYU(w)) 1 FHU(w)) for all w € Q. Similarly, we have 0 < G/} (U(w)) 1
HU(w)) and 0 < G (1 —U(w)) T G7H(1 — U(w)) for all w € Q. Thus, 0 <
U)G UW) 1 FHUW)G (Uw)) and 0 < FAUW)G (1 - Uw)) 1

F‘l(U(w))G '(1 = U(w)) for all w € Q. By the monotone convergence theorem,

we therefore have E(F; ' (U)G,*(U)) — E(F~YU)G Y(U)) and E(F,Y(U)G'(1 -

U)) — E(FY(U)G7'(1-U)). Moreover, 0 < X,,(w)Y,(w) T X(w)Y (w) for all w € Q2

and so F(X,Y,) — E(XY). Hence, the assertion follows. O

w

w

Corollary 2.3 can be used to prove monotonicity of covariance between infinitely

divisible random variables. Specifically, let ¢(¢) be the characteristic function of an



infinitely divisible distribution with finite variance. Then there exist a real number ~
and a real-valued, nondecreasing, right-continuous and bounded function H defined

on R with H(—o0) = lim,_,_ H(z) = 0 such that

o0

o(t) = exp [z'fyt + / (e —1— zt:c)% dH(x)|,

which is called the Kolmogorov representation of ¢(t), and vice versa (cf. Theorem
4 in Section 12.1 of Chow and Teicher, 1988). Since, for each o > 0, ¢“(¢) is also
an infinitely divisible characteristic function with v* = ay and H* = aH, the class
of distributions with characteristic functions ¢(t), a > 0 forms a family of one-
parameter infinitely divisible distributions with finite variances. Typical examples
of this family are N(0,«), Poisson(a)), Gamma(a, 1), etc. In the following theorem
we establish a monotone property for the covariance between random variables with

these one-parameter infinitely divisible distribution families.

Theorem 2.6 Let ¢1(t) and ¢o(t) be any two infinitely divisible characteristic func-
tions with finite variances. For each o > 0, let F, and G, denote the infinitely
divisible distribution functions with characteristic functions ¢$(t) and ¢3(t), respec-

tively. Then, for any a, 3,7v,0 > 0, we have

cov(F N (U), G5 (U)) < cou(F L (U), Ggis(U)),

a+y

where U is a Uniform(0,1) random variable.

Proof. Let U, Uy, and U be independent Uniform(0,1) random variables. Then,
from the infinitely divisible property, it follows that F;'(Uy) + F;'(Us) Ly L(U)
and Ggl(Ul) + G5 (Uy) £ GE}L(;(U). Thus, by Corollary 2.3, we have

cov(E;H L), Ggl(Ul)) + COV(FW_l(Uz), G5 (Us))
= cov(E, Y (Uy) + Fy_l(Ug), Ggl(Ul) +G5(Uy))
< cov(F, L (U), Gais(U)).

a+y

Since cov(F(Uy), G5 (Uy)) > 0, the theorem holds. O

8



3 Discussion

The results in Section 2 play very useful roles in constructing random vectors of
correlated component variables. The bounds in Corollary 2.3 can be used to check
the existence of random variables satisfying a given correlation matrix if their marginal
distributions are specified. For a simple instance, suppose that X ~ Uniform(0, 1)
and Y ~ Exp(1). The new upper bound for the covariance between X and Y is 1/4
while the corresponding Cauchy-Schwarz bound is 1/(2v/3). Thus, the correlation
coefficient should not be specified as greater than 1/3/2 when conducting a simulation
study.

If the underlying marginal distributions are specified to be infinitely divisible,
the monotone property in Theorem 2.6 is crucial in constructing their corresponding
variables under specified correlation. While more general cases are discussed in Park
(2002), we here consider an example of constructing a bivariate random vector (X,Y)
such that X ~ F,, Y ~ Gg and corr(X,Y) = p, where F,, and G are defined as
in Theorem 2.6. Let U be a Uniform(0,1) random variable and let u, and vs denote
the variances of F,, and G, respectively. Then cov(X,Y) = p,/uavs and so p should
be specified to satisfy cov(F,'(U),G5'(U)) > p\/ugus. If cov(F ' (U), G5 (U)) =
py/Uavp, then just take X = F'(U) and Y = Ggl(U). Otherwise, there must exist
ay € (0,5) such that

cov(F, 1 (U), G5 (U)) = py/uas, (3.1)

and so by taking X = F7'(Uy) and Y = G1(Uy) + G (Up) with Uy and U, being
independent Uniform(0,1) random variables we can construct the desired random
vector. A searching algorithm for the value of v in (3.1) can be easily developed from

the monotone property in Theorem 2.6.
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