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Abstract
In this paper we study strong approximations (invariance principles) of the

sequential uniform and general Bahadur-Kiefer processes of long-range dependent
sequences. We also investigate the strong and weak asymptotic behavior of the
sequential Vervaat process, i.e., the integrated sequential Bahadur-Kiefer process,
properly normalized, as well as that of its deviation from its limiting process, the
so-called Vervaat error process. It is well known that the Bahadur-Kiefer and the
Vervaat error processes cannot converge weakly in the i.i.d. case. In contrast to
this we conclude that the Bahadur-Kiefer and Vervaat error processes, as well as
their sequential versions, do converge weakly to a Dehling-Taqqu type limit process
for certain long-range dependent sequences.

1 Introduction

Assume that we have a stationary long-range dependent sequence of standard Gaussian

random variables, η1, η2, · · · , ηn, · · ·, i.e., the Gaussian sequence {ηn, n ≥ 1} with Eη1 =

0 and Eη2
1 = 1 is assumed to have a positive covariance function of the form

γ(k) := E(η1ηk+1) = k−DL(k), 0 < D < 1, (1.1)

for large k, where L(·) is a slowly varying function at infinity in the sense that

lim
s→∞

L(st)
L(s)

= 1 for every t ∈ (0,∞).
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Let G be an arbitrary real-valued Borel measurable function on the real line IR, and

consider the subordinate process

Xn = G(ηn), n ≥ 1, (1.2)

with marginal distribution function F (x) = P (X ≤ x), x ∈ IR, where X = G(η) and η

is a standard normal random variable.

The assumption (1.2) allows one to use the theory of nonlinear functionals of Gaus-

sian processes. As in Dehling and Taqqu (1989), we expand the function I(Xn ≤
x)− F (x) = I(G(·) ≤ x)− F (x) in Hermite polynomials, for any fixed x ∈ IR,

I(Xn ≤ x)− F (x) =
∞∑

l=τx

cl(x)Hl(ηi)/l!,

where

Hl(x) = (−1)le
x2

2
dl

dxl
e−

x2

2 , l = 1, 2, · · · , x ∈ IR,

is the l-th Hermite polynomial,

cl(x) = E {[I (G(η) ≤ x)− F (x)]Hl(η)} ,

and τx for any x ∈ IR is the index of the first nonzero coefficient in the expansion, and it

is called the Hermite rank of the function I(G(·) ≤ x)−F (x). Then, as in Dehling and

Taqqu (1989), the Hermite rank of the class of functions {I(Xn ≤ x)−F (x), x ∈ IR} is

defined by

τ = min{τx : cτx(x) 6= 0 for some x ∈ IR}, (1.3)

i.e., τ = infx τx. If we assume that F is continuous, then the induced sequence of

random variables

Un = F (Xn) = F (G(ηn)), n ≥ 1, (1.4)

is a Uniform-[0, 1] random sequence. Consequently, for any fixed y ∈ (0, 1), the function

(I(Un ≤ y)− y) = (I(F (G(·)) ≤ y)− y) has the Hermite expansion

I(Un ≤ y)− y =
∞∑

l=τ

Jl(y)Hl(ηn)/l!,
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where

Jl(y) = E{[I(F (G(η)) ≤ y)− y]Hl(η)}.

Obviously, Jl(y) = cl(Q(y)) for any y ∈ (0, 1), where Q is the quantile function of F ,

i.e.,

Q(y) = F−1(y) = inf{x : F (x) = y}, 0 < y ≤ 1, Q(0) = Q(0+),

and hence the Hermite rank of the class of functions {I(Un ≤ y)− y, y ∈ (0, 1)} is also

τ .

Given chronologically ordered samples X1, · · · , Xn and U1, · · · , Un, n ≥ 1, as in (1.2)

and (1.4) respectively, their corresponding sequential empirical distribution functions

are

Ê[nt](y) =

{
0, 0 ≤ t < 1/n,
1

[nt]

∑[nt]
i=1 I(Ui ≤ y), 0 ≤ y ≤ 1, 1/n ≤ t ≤ 1,

and

F̂[nt](x) =

{
0, 0 ≤ t < 1/n,
1

[nt]

∑[nt]
i=1 I(Xi ≤ x), −∞ < x < ∞, 1/n ≤ t ≤ 1.

Based on these functions, we define the sequential empirical quantile functions

Û[nt](y) = Ê[nt]
−1

(y) = inf{s : Ê[nt](s) ≥ y}, 0 < y ≤ 1,

Û[nt](0) = Û[nt](0+), 0 ≤ t ≤ 1,

and

Q̂[nt](y) = F̂[nt]
−1

(y) = inf{x : F̂[nt](x) ≥ y}, 0 < y ≤ 1,

Q̂[nt](0) = Q̂[nt](0+), 0 ≤ t ≤ 1.

Now the corresponding sequential uniform and general empirical and quantile processes

are defined by

αn(y, t) = d−1
n [nt](Ê[nt](y)− y), 0 ≤ y ≤ 1, 0 ≤ t ≤ 1,

un(y, t) = d−1
n [nt](y − Û[nt](y)), 0 ≤ y ≤ 1, 0 ≤ t ≤ 1,

βn(x, t) = d−1
n [nt](F̂[nt](x)− F (x)), −∞ < x < ∞, 0 ≤ t ≤ 1,
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γn(y, t) = d−1
n [nt](Q(y)− Q̂[nt](y)), 0 < y < 1, 0 ≤ t ≤ 1,

where

d2
n = n2−τDLτ (n) (1.5)

with 0 < D < 1/τ , where τ is defined in (1.3).

By Theorem 3.1 of Taqqu (1975) one arrives at

Var(nF̂n(x)) ∼ n2−τDLτ (n)
2c2

τ (x)
τ !(2− τD)(1− τD)

= O(d2
n)

for each fixed x ∈ IR as n → ∞, where the symbol ∼ means asymptotic proportional

equivalence. This explains the choice of dn as defined in (1.5) for defining the above

sequential empirical and quantile processes.

Dehling and Taqqu (1988, 1989) studied the asymptotic properties of the sequen-

tial general empirical process βn(x, t). The following important two-parameter weak

convergence theorem for βn(x, t) is due to Dehling and Taqqu (1989) whose Theorem

1.1 reads as follows.

Theorem A. Let the stationary subordinate process {Xn, n ≥ 1} be as in (1.2) with

τ as in (1.3), and let dn be as in (1.5). Then, as n →∞,

{βn(x, t);−∞ ≤ x ≤ +∞, 0 ≤ t ≤ 1} converges weakly in D[−∞, +∞]× [0, 1],

equipped with the sup-norm, to
{

cτ (x)

√
2

(2− τD)(1− τD)
Yτ (t);−∞ ≤ x ≤ +∞, 0 ≤ t ≤ 1

}
, 0 < D < 1/τ,

where Yτ (t) is 1/τ ! times a Hermite process of rank τ , given for each t ∈ [0, 1] as a

multiple Wiener-Itô-Dobrushin integral that is defined in (1.7) of Dehling and Taqqu

(1989).

We also note that Dehling and Taqqu (1988) obtained the functional law of the

iterated logarithm as well for βn(x, t) in D[−∞, +∞]× [0, 1].

Remark 1.1. We recall (cf. Müller (1970)) that in the i.i.d. case the weak limit of

βn(x, t) is a two-time parameter Gaussian process in x and t, the so-called Kiefer process
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on account of the landmark Kiefer (1972) paper, which is a Brownian bridge in x and

a Wiener process (Brownian motion) in t. The Dehling-Taqqu (1989) limit in Theorem

A differs greatly from the Kiefer process. Namely, it separates the variables in x and t

in terms of being the product of a deterministic function in x and a stochastic process

in t which is non-Gaussian when τ ≥ 2.

Assuming that F has a Lebesgue density function f on IR, S. Csörgő and Mielniczuk

(1995) showed that the kernel estimators based density process corresponding to the

general empirical process βn(x, 1) converges weakly with the same normalization to the

derivative of the limiting process in Theorem 1.1 of Dehling and Taqqu (1989) that we

quoted as Theorem A here.

We note that, with F continuous, we have

αn(y, t) = βn(Q(y), t), y, t ∈ [0, 1], and βn(x, t) = αn(F (x), t), x ∈ IR, t ∈ [0, 1].

Hence, if F is continuous, all strong and weak asymptotic results hold true simultane-

ously for both βn(x, t) and αn(y, t).

For further reference we spell out the weak convergence result that follows from

Theorem A for αn(y, t) = βn(Q(y), t), y, t ∈ [0, 1], based on the induced sequence

{Un, n ≥ 1} as in (1.4).

Corollary A. With F continuous and τ and D as in (1.3) and (1.5) respectively, as

n →∞, we have

αn(y, t) = βn(Q(y), t) D−→
√

2
(2−τD)(1−τD)cτ (Q(y))Yτ (t)

=
√

2
(2−τD)(1−τD)Jτ (y)Yτ (t)

in D[0, 1]2 that is equipped with sup-norm, where, as before, Yτ (t) is 1/τ ! times a

Hermite process of rank τ , given for each t ∈ [0, 1] as a multiple Wiener-Itô-Dobrushin

integral as in Theorem A.

In this paper we go further along these lines and establish strong approximations of

the sequential uniform and general quantile processes, and of the sequential Bahadur-

Kiefer processes as defined in (1.7) and (1.8) below. Moreover, we also study the
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sequential uniform Vervaat and Vervaat error processes of (1.9) and (1.10) respectively,

along the same lines.

Since there is no simple relationship between un(y, t) and γn(y, t), following Csörgő

and Révész (1978) in the i.i.d. case along the lines of Csörgő and Szyszkowicz (1998),

here too we shall consider the normalized sequential general quantile process

ρn(y, t) = f(Q(y)γn(y, t) = d−1
n [nt]f(Q(y))(Q(y)− Q̂[nt](y))

= un(y, t) f(Q(y))
f(Q(θn(y,t))) ,

(1.6)

where 0 ≤ y, t ≤ 1, |y − θn(y, t)| ≤ |y − Û[nt](y)|, provided that F is an absolutely

continuous distribution function with a strictly positive Lebesgue density function f

on the real line.

We define the stochastic processes

{R∗
n(y, t), 0 ≤ y ≤ 1, 0 ≤ t ≤ 1, n = 1, 2 · · ·}

= {dn(αn(y, t)− un(y, t)), 0 ≤ y ≤ 1, 0 ≤ t ≤ 1, n = 1, 2 · · ·},
(1.7)

and
{Rn(y, t), 0 ≤ y ≤ 1, 0 ≤ t ≤ 1, n = 1, 2 · · ·}
= {dn(αn(y, t)− ρn(y, t)), 0 ≤ y ≤ 1, 0 ≤ t ≤ 1, n = 1, 2 · · ·}
= {dn(βn(Q(y), t)− ρn(y, t)), 0 ≤ y ≤ 1, 0 ≤ t ≤ 1, n = 1, 2 · · ·},

(1.8)

which rhyme with the sequential uniform and general Bahadur-Kiefer processes respec-

tively in the i.i.d. case that enjoy some remarkable asymptotic properties (cf. Bahadur

(1966), Kiefer (1967, 1970)). For a review of various aspects of this subject in the i.i.d.

case we refer to Csörgő and Révész (1981), Csörgő (1983), Shorack and Wellner (1986),

Csörgő and Szyszkowicz (1998), Csáki et al. (2002), Csörgő and Zitikis (2002), and the

references therein.

One of the remarkable asymptotic properties of the sequential Bahadur-Kiefer pro-

cess in the i.i.d. case is that anR∗
n(·, ·) cannot converge weakly in the space D[0, 1]2

for any normalizing sequence {an} of positive real numbers (cf. Vervaat (1972a,b), and

Csáki et al. (2002) for a review of this matter in case of R∗
n(·, 1)).

6



On the other hand, with dn = n1/2, Vervaat (1972a,b) in the i.i.d. case established

the weak convergence of the following integrated Bahadur-Kiefer process

Vn(s, t) = 2d−2
n [nt]

∫ s

0
R∗

n(y, t)dy, 0 ≤ s ≤ 1, 0 ≤ t ≤ 1, (1.9)

the so-called sequential uniform Vervaat process in the case of t = 1, via that of α2
n(s, 1),

as a consequence of showing that sup0≤s≤1 |Vn(s, 1)−α2
n(s, 1)| = oP (1), as n →∞. We

define the sequential Vervaat error process Qn(s, t) by

Qn(s, t) = Vn(s, t)− α2
n(s, t), 0 ≤ s ≤ 1, 0 ≤ t ≤ 1. (1.10)

Csörgő and Zitikis (2001), Csáki et al. (2002) concluded that, just like the uniform

Bahadur-Kiefer process, in the i.i.d. case anQn(·, 1) cannot converge weakly in the

space D[0, 1] for any sequence {an} of positive real numbers. Hence they studied the

strong and weak asymptotic point-wise, sup- and Lp-norm behavior of the process

Qn(·, 1) for i.i.d. random samples à la Kiefer (1970) with dn = n1/2.

We shall see in this paper that, unlike in the i.i.d. case, when appropriately nor-

malized, the sequential Bahadur-Kiefer processes and the sequential uniform Vervaat

error process of long-range dependent sequences as in (1.2) and (1.4) both converge

weakly in D[0, 1]2, via first establishing strong approximations for these processes in

sup-norm. This new phenomenon in this context will be seen to be due to the limiting

processes being Dehling-Taqqu type processes (cf. Remark 1.1), i.e., multiplications

of a non-random function with a random process which typically is a power of Yτ (t),

the Hermite process of rank τ of Theorem A. Thus, via strong invariance, we arrive at

functional limit theorems and laws of the iterated logarithm for the sequential Bahadur-

Kiefer and the sequential uniform Vervaat error processes.

In Sections 2 and 3 we present strong invariance principles (approximations) for

the sequential uniform Bahadur-Kiefer process and sequential uniform Vervaat error

process of long-range dependent sequences as in (1.2) and (1.4), namely for R∗
n(y, t)

and Qn(s, t) as in (1.7) and (1.10) respectively. Section 4 is devoted to establishing
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analogous statements for the sequential general Bahadur-Kiefer process Rn(y, t) of (1.8)

by examining the sup-norm distance between the sequential uniform quantile process

un(y, t) and the normalized sequential general quantile process ρn(y, t) à la Csörgő and

Révész (1978), and Csörgő and Szyszkowicz (1998). The results obtained in this paper

for long-range dependent sequences are analogs of those in the i.i.d. case in Csörgő and

Szyszkowicz (1998), Csörgő and Shi (1998, 2001), Csörgő and Zitikis (1999, 2001), and

Csáki et al. (2002).

For a thorough analysis and use of long-range dependence in general, we refer to

Beran (1992, 1994), and Doukhan, Oppenheim and Taqqu (2003).

2 Sequential uniform Bahadur-Kiefer process, Strong ap-
proximations

2.1 Preliminaries

Throughout this paper we assume that {Xn = G(ηn)} and {Un = F (G(ηn))},
n ≥ 1, are as in (1.2) and (1.4) respectively, long-range dependent random sequences

that are governed by the standard Gaussian random process {ηn} which satisfies (1.1).

We first derive a strong approximation of the sequential general empirical process

βn(x, t) by the process cτ (x)
∑[nt]

i=1 Hτ (ηi)/τ !, via changing the rate of convergence in

Theorem 3.1 of Dehling and Taqqu (1989)(written as DT (1989) from now on) to fit

our purposes in this exposition.

Proposition 2.1 Let p be the smallest integer satisfying max
(
2, τ, τD

1−τD

)
< p ≤

max
(

4−τD
D , 4−τD

1−τD

)
. Assume that supu≥1 γ(u) < δ, where 0 < δ < (p− 1)−1 and γ(·) is

as in (1.1). Then, as n →∞, we have

sup
0≤t≤1

sup
−∞<x<+∞

|βn(x, t)− d−1
n cτ (x)

[nt]∑

i=1

Hτ (ηi)/τ !| = O(n−νp/2+τD/4+ε) a.s.

with any sufficiently small positive ε, where ν = min(D, 1− τD)/2.

Proof. The proof is based on the well-known chaining argument of DT (1989). Hence,
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while studying their proof of Theorem 3.1 in DT (1989), we shall only briefly indicate

the extra steps that are needed for us to achieve our goal.

Let Sn(k; x, y) = Sn(k; x)− Sn(k; y) (−∞ < y ≤ x < +∞), where

Sn(k; x) = d−1
n

k∑

i=1

{I(Xi ≤ x)− F (x)− cτ (x)Hτ (ηi)/τ !} , 1 ≤ k ≤ n

Then we have

dnSn(k; x, y) =
k∑

i=1

∞∑

q=τ+1

cq(x)− cq(y)
q!

Hq(ηi) ≤ C
k∑

i=1

∞∑

q=τ+1

Hq(ηi)

with some finite constant C.

Via Proposition 4.2 of Taqqu (1977), one can verify that

E|dnSn(k; x, y)|p ≤ C

{
k

k∑

u=0

|γ(u)|τ+1

}p/2

.

Suppose first 0 < D < (τ + 1)−1. Then, by (1.1), as k →∞,

k
k∑

u=0

|γ(u)|τ+1 = O(k2−(τ+1)DLτ+1(k)).

When D ≥ (τ + 1)−1,
∑k

u=0 |γ(u)|τ+1 is slowing varying as k →∞, and hence

k
k∑

u=0

|γ(u)|τ+1 = O(kL0(k))

for some slowly varying function L0(·) at infinity. Thus we arrive at

E|Sn(k; x, y)|p ≤ Ck−νp+ε
(

dk

dn

)p

≤ C

(
k

n

)(1−ν−τD/2)p

n−νp+ε (2.1)

with any sufficiently small positive ε for any −∞ < y ≤ x < +∞, 1 ≤ k ≤ n.

For any s ≥ 1, define the partition

−∞ = π0,s < π1,s < · · · < π2s,s = +∞.

Given ζ > 0, let K =
[
log2(Cζ−1nd−1

n )
]
+ 1. Next, for any x ∈ IR and s = 0, 1, · · · ,K,

define jx
s by

πjx
s ,s ≤ y < πjx

s +1,s.
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One can then define a chain linking −∞ to each point x by

−∞ = πjx
0 ,0 ≤ πjx

1 ,1 ≤ · · · ≤ x < πjx
K+1,K .

Now using (2.1) instead of Lemma 3.1 of DT (1989) and applying Chebyshev’s

inequality, along the same lines as those of the proof of Lemma 3.2 of DT (1989), we

obtain

P
{

sup
−∞<x<+∞

|Sn(k;x)| > ζ

}

≤ ∑K
s=0 P

{
sup

−∞<x<+∞
|Sn(k;πjx

s ,s, πjx
s+1,s+1)| > ζ/(s + 3)2

}

+ P

{
d−1

n |
n∑

i=1

Hτ (ηi)| > 2K−1ζ/4

}

≤ C( k
n)(1−ν−τD/2)pn−νp+εζ−p ∑K

s=0 2s+1(s + 3)2p + C( dk
dn

)pζ−p2−p(K−1)

≤ C( k
n)(1−ν−τD/2)pn−νp+εζ−p2K(K + 3)2p+1 + C( k

n)(1−τD/2)pn−τDp/2+ε

≤ Cn−νp+τD/2+ε
(
( k

n)(1−ν−τD/2)pζ−p−ε + ( k
n)(1−τD/2)p

)

≤ Cn−νp+τD/2+ε
(
ζ−p−ε + ( k

n)(1−τD/2)p
)

for any ζ ∈ (0, 1]. The last inequality is due to the fact that (1− ν − τD/2)p > 1.

On applying this conclusion, an appropriate variant of the proof of Theorem 3.1 of

DT (1989) leads to

P
{

max
k≤n

sup
−∞<x<+∞

|Sn(k;x)| > ζ

}
≤ Cn−νp+τD/2+ε(1 + ζ−p−ε). (2.2)

We now make use of (2.2) with n = nl = min{j : j ≥ el} and ζ = ζl = exp{l(−νp/2 +

τD/4+ε)/(p+ε)}, l = 0, 1, · · ·. Then, by Borel-Cantelli lemma, there exists an integer

l0 such that for any l ≥ l0,

max
k≤nl

sup
−∞<x<+∞

|Snl
(k; x)| ≤ exp{−l(νp/2− τD/4− ε)} a.s.

Let n ≥ el0 and let l be the integer such that nl−1 ≤ n < nl. Since e−l ≤ n−1 and

l →∞ as n →∞, by definition of dn and that of a slowly varying function, we have

sup
−∞<x<+∞

|Sn(n; x)| ≤ dnl

dn
max
k≤nl

sup
−∞<x<+∞

|Snl
(k; x)| ≤ Cn−νp/2+τD/4+ε.

This implies that

sup
−∞<x<+∞

d−1
n nνp/2−τD/4−ε|dnβn(x, 1)− cτ (x)

n∑

i=1

Hτ (ηi)/τ !| = O(1) a.s.
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The latter, in turn, gives that, with fixed t ∈ (0, 1] and (nt) →∞ as n →∞, we have

sup
−∞<x<+∞

|dnβn(x, t)− cτ (x)
[nt]∑

i=1

Hτ (ηi)/τ ! | = O(d[nt](nt)−νp/2+τD/4+ε)

= O((nt)1−νp/2−τD/4+εLτ/2(nt)) a.s.,

and by our assumption for p, we see that the exponent of (nt)1−νp/2−τD/4+ε is pos-

itive. Hence, without loss of generality, we can assume that the regularly varying

function (nt)1−νp/2−τD/4+εLτ/2(nt) of positive exponent is a strictly monotone increas-

ing regularly function of (nt) (cf. 7. of Corollary 1.2.1 of de Haan (1975), or Theo-

rem 1.5.4 of Bingham, Goldie and Teugels (1987)). Hence, on dividing both sides by

n1−νp/2−τD/4+εLτ/2(n) and then taking sup0≤t≤1 on both sides, we obtain the result of

Proposition 2.1. 2

Remark 2.1 Just like Theorem 3.1 of Dehling and Taqqu (1989), Proposition 2.1

implies Theorem A, i.e., Theorem 1.1 of Dehling and Taqqu (1989). Moreover, in

case of some important special cases, Proposition 2.1 can be changed into weighted

sequential approximations in probability along the lines of Szyszkowicz (1998). For

example, if in (1.2) G(x) = x, then τ of (1.3) is equal to 1, and Y1(t) of Theorem A

is a fractional Brownian motion with variance t2−D, 0 < D < 1, (cf. Example 1 of

Dehling and Taqqu (1989)). Let now Q̃ be the class of positive functions q on (0, 1],

i.e., infδ≤t≤1 q(t) > 0 for all 0 < δ < 1, for which we have

(a) lim
t↓0
|Y1(t)|/q(t) = 0 a.s. or (b) lim sup

t↓0
|Y1(t)|/q(t) < ∞ a.s.

Then, characterizing the class of functions Q̃ in cases of (a) and (b) respectively along

the lines of M. Csörgő, S. Csörgő, Horváth and Mason (1986), appropriate analogs of

the results of Szyszkowicz (1998) in weighted sup-norm and Lp-metrics will continue to

hold true in this context as well. Further to this, the rest of this exposition can also be

extended along the lines of Section 3 of Csörgő and Szyszkowicz (1998) in the special

case of G(x) = x, i.e., when Y1(t) of Theorem A is a fractional Brownian motion, so

that, in this special case, in probability and weak convergence versions of our results
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would hold in weighted sup-norm and Lp-metrics. However, we will not attempt to

carry out this program in our present paper.

Remark 2.2 Another interesting special case is G(x) = x2, which gives rise to a class

of functions of Hermite rank τ = 2 (cf. Exmaple 2 of Dehling and Taqqu (1989)).

Then Y2(t) of Theorem A is called the Rosenblatt process (cf. Taqqu (1975)). Y2(t)

is non-Gaussian, has stationary increments and the same covariance function as Y1(t),

i.e.,

EY2(s)Y2(t) =
1
2

{
|s|2H + |t|2H − |s− t|2H

}
,

but with H = 1 − D, 0 < D < 1/2 (in case of EY1(s)Y1(t), on the right hand side

H = 1−D/2, 0 < D < 1). Mutatis mutandis, the program that is outlined in Remark

2.1 may also be feasible in terms of Y2(t), though likely more difficult as well.

In the rest of this paper the marginal distribution function F of {Xn} in (1.2) is

assumed to be continuous. We also assume

Assumption (A): Jτ (y) and the derivatives J ′τ (y), Jτ
′′(y) with τ as in (1.3) are

uniformly bounded and

sup
0<y≤δn

|Jτ (y)| = O(δn)

for any sequence δn → 0 as n →∞.

Remark 2.3 Since we assume that F is continuous, Jτ (0) = 0, it follows that

sup
0<y≤δn

|Jτ (y)| = sup
0<y≤δn

|Jτ (y)− Jτ (0)| ≤ sup
0<y≤δn

y · sup
0<θ≤δn

|J ′τ (θ)| = O(δn).

Moreover, if we take G as G = F−1Φ, we see that J1(y) = −φ(Φ−1(y)) 6= 0 for

any y ∈ (0, 1), where φ, Φ−1 denote respectively the density function and the quantile

function of the unit normal distribution function Φ. This means that in this case τ = 1,

and elementary calculations show that Assumption (A) holds true automatically.

For the sake of first approximating the sequential uniform empirical and quantile

processes αn(y, t) and un(y, t), we define the two-time parameter stochastic process

12



{V (y, nt); 0 ≤ y ≤ 1, 0 ≤ t ≤ 1, n ≥ 1} by

V (y, nt) = Jτ (y)
[nt]∑

i=1

Hτ (ηi)/τ !, (2.3)

and, as an immediate consequence of Proposition 2.1, we conclude the following strong

approximation for the sequential uniform empirical process αn(y, t).

Corollary 2.1 Under the assumptions of Proposition 2.1, we have

sup
0≤t≤1

sup
0≤y≤1

|αn(y, t)− d−1
n V (y, nt)| = O(n−νp/2+τD/4+ε) a.s.

with any sufficiently small positive ε, where ν = min(D, 1− τD)/2.

Let κ1τ = sup0≤y≤1 |Jτ (y)|, κ2τ = sup0≤y≤1 |Jτ (y) · J ′τ (y)|, κ3τ = sup0≤y≤1 |J2
τ (y) ·

J ′τ (y)|. Via Assumption (A) we conclude 0 < κ1τ , κ2τ , κ3τ < ∞. Moreover, if we take

G = F−1Φ, by Remark 2.3 it is easy to check that κ11 = 1/(2π)1/2, κ21 = 1/(2πe)1/2

and κ31 = 1/{2π(2e)1/2}.
The process V (y, nt) defined in (2.3) that is approximating αn(y, t) as in Corollary

2.1 can also be used to approximate the sequential uniform quantile process un(y, t).

Namely, we have

Proposition 2.2 Let p be the smallest integer satisfying max
(
3τ, 3τD

1−τD

)
< p ≤

max
(

4−τD
D , 4−τD

1−τD

)
. Suppose Assumption (A) holds. Then under the assumptions of

Corollary 2.1, as n →∞, we have

sup
0≤t≤1

sup
0≤y≤1

|un(y, t)− d−1
n V (y, nt)| = O(n−τD/2Lτ/2(n)(log log n)τ ) a.s. (2.4)

Proof. Note that

un(y, t) = d−1
n [nt]{Ê[nt](Û[nt](y))− Û[nt](y)} − d−1

n [nt]{Ê[nt](Û[nt](y))− y}
= αn(Û[nt](y), t)− d−1

n [nt]{Ê[nt](Û[nt](y))− y},
and it is easy to see that

0 ≤ sup
0≤y≤1

|Ên(Û[nt](y))− y| ≤ 1/[nt].

13



Thus we have

sup
0≤t≤1

sup
0≤y≤1

|un(y, t)−αn(y, t)| = sup
0≤t≤1

sup
0≤y≤1

|αn(Û[nt](y), t)−αn(y, t)|+O(d−1
n ). (2.5)

Applying Corollary 2.1, estimating the right hand side of (2.5) we obtain

sup
0≤t≤1

sup
0≤y≤1

|αn(Û[nt](y), t)− αn(y, t)|
= sup

0≤t≤1
sup

0≤y≤1
d−1

n |V (Û[nt](y), nt)− V (y, nt)|+ O(n−νp/2+τD/4+ε) a.s.
(2.6)

Hence we need to study the size of the random increments of the process V (y, nt).

The Mori-Oodaira LIL (1987) yields

lim sup
n→∞

nτD/2−1(L(n) log log n)−τ/2 sup
0≤t≤1

|
[nt]∑

i=1

Hτ (ηi)/τ !| = 2(τ+1)/2

√
τ !(2− τD)(1− τD)

a.s.

(2.7)

Hence, by (2.3) and the fact that 0 < κ1τ < ∞, we have

lim sup
n→∞

(log log n)−τ/2 sup
0≤t≤1

sup
0≤y≤1

d−1
n |V (y, nt)| = 2(τ+1)/2κ1τ√

τ !(2− τD)(1− τD)
a.s. (2.8)

Consequently, via Corollary 2.1 we conclude

lim sup
n→∞

(log log n)−τ/2 sup
0≤t≤1

sup
0≤y≤1

|αn(y, t)| = 2(τ+1)/2κ1τ√
τ !(2− τD)(1− τD)

a.s.,

and this, in turn, gives

lim sup
n→∞

(log log n)−τ/2 sup
0≤t≤1

sup
0≤y≤1

|un(y, t)| = 2(τ+1)/2κ1τ√
τ !(2− τD)(1− τD)

a.s. (2.9)

on account of

sup
0≤t≤1

sup
0≤y≤1

|αn(y, t)| = sup
0≤t≤1

sup
0≤y≤1

|un(y, t)|.

On the other hand, by the mean value theorem we arrive at

|Jτ (Ûn(y))− Jτ (y)| = |Ûn(y)− y||J ′τ (θ1n(y))|,

where |y − θ1n(y)| ≤ |Ûn(y)− y|. Now (2.9) with t = 1 implies that, as n →∞,

sup
0≤y≤1

|Ûn(y)− y| = sup
0≤y≤1

dnn−1|un(y, 1)| = O((n−DL(n) log log n)τ/2) → 0 (2.10)

14



almost surely (we note in passing that (2.10) is just a Glivenko-Cantelli theorem with

rates of convergence in terms of the long-range dependent sequence as in (1.4)). Thus,

by Assumption (A), as n →∞, we arrive at

sup
0≤y≤1

|Jτ (Ûn(y))− Jτ (y)| = O((n−DL(n) log log n)τ/2) a.s.

The latter combined with (2.7) for t = 1 yields

sup
0≤y≤1

d−1
n |V (Ûn(y), n)− V (y, n)| = O(n−τD/2Lτ/2(n)(log log n)τ ) a.s. (2.11)

Using (2.5)-(2.6), (2.11) and our assumption for p, we arrive at

sup
0≤y≤1

|un(y, 1)− αn(y, 1)| = O(n−τD/2Lτ/2(n)(log log n)τ ) a.s. (2.12)

Now (2.12) combined with Corollary 2.1 with t = 1 yields

sup
0≤y≤1

|un(y, 1)− d−1
n V (y, n)| = O(n−τD/2Lτ/2(n)(log log n)τ ) a.s.

On multiplying through by dn and then applying a similar argument as used at the end

of the proof of Proposition 2.1, we conclude (2.4). 2

Next, in view of (2.5) and (2.6) we establish the exact size of the random increments

of the process V (y, nt) for convenient use later on.

Proposition 2.3 Under the assumptions of Proposition 2.2, we have

lim sup
n→∞

nτD−1(L(n) log log n)−τ sup
0≤t≤1

sup
0≤y≤1

|V (Û[nt](y), nt)− V (y, nt)|
= 2τ+1κ2τ

τ !(2−τD)(1−τD) a.s.

Proof. We note that

Jτ (Ûn(y))− Jτ (y)
= J ′τ (y)(Ûn(y)− y) + 1

2(Ûn(y)− y)2Jτ
′′(θ2n(y))

= −J ′τ (y)n−1V (y, n) + J ′τ (y)dnn−1(d−1
n V (y, n)− un(y)) + 1

2(Ûn(y)− y)2Jτ
′′(θ2n(y)),

where |y−θ2n(y)| ≤ |Ûn(y)−y|. Consequently, by (2.4) with t = 1 and (2.10) we obtain

sup
0≤y≤1

|J ′τ (y)dnn−1(un(y)− d−1
n V (y, n))| = O((n−DL(n) log log n)τ ) a.s.
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and

sup
0≤y≤1

∣∣∣∣
1
2
(Ûn(y)− y)2Jτ

′′(θ2n(y))
∣∣∣∣ = O((n−DL(n) log log n)τ ) a.s.

Hence

sup
0≤y≤1

|Jτ (Ûn(y))− Jτ (y) + J ′τ (y)n−1V (y, n)| = O((n−DL(n) log log n)τ ) a.s.

Now (2.7) with t = 1 implies

lim sup
n→∞

(n−DL(n) log log n)−τ/2 sup
0≤y≤1

|Jτ (Ûn(y))− Jτ (y)| = 2(τ+1)/2κ2τ√
τ !(2− τD)(1− τD)

almost surely and, again by (2.7), we conclude that

lim sup
n→∞

nτD−1(L(n) log log n)−τ sup
0≤y≤1

|V (Ûn(y), n)− V (y, n)|
= 2τ+1κ2τ

τ !(2−τD)(1−τD) a.s.

Hence we have, with t ∈ (0, 1) fixed, as (nt) →∞,

sup
0≤y≤1

|V (Û[nt](y), nt)− V (y, nt)|

=
(

2τ+1κ2τ
τ !(2−τD)(1−τD) + o(1)

)
(nt)1−τDLτ (nt)(log log(nt))τ a.s.,

and hence, on dividing both sides by n1−τDLτ (n)(log log n)τ and assuming without

loss of generality that the regularly varying function n1−τDLτ (n) of positive exponent

is strictly monotone increasing, taking sup0≤t≤1 on both sides, we conclude the proof

of Proposition 2.3. 2

Proposition 2.4 Under the assumptions of Proposition 2.2, as n →∞, we have

sup
0≤t≤1

sup
0≤y≤1

|V (Û[nt](y), nt)− V (y − [nt]−1V (y, nt), nt)|

= O(n1−3τD/2(L(n) log log n)3τ/2) a.s.

or, equivalently,

sup
0≤t≤1

sup
0≤y≤1

|(V (Û[nt](y), nt)− V (y, nt))− (V (y − [nt]−1V (y, nt), nt)− V (y, nt))|

= O(n1−3τD/2(L(n) log log n)3τ/2) a.s.
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Proof. Notice that

V (Ûn(y), n) = V (y − n−1V (y, n)−∆n(y), n),

where ∆n(y) = dnn−1(un(y, 1)− d−1
n V (y, n)). By Proposition 2.2 with t = 1, we get

sup
0≤y≤1

|∆n(y)| = O((n−DL(n) log log n)τ ) a.s.

Consequently, along the lines of the proof for (2.11), we obtain

sup
0≤y≤1

∣∣∣V (Ûn(y), n)− V (y − n−1V (y, n), n)
∣∣∣ = O(n1−3τD/2L3τ/2(n)(log log n)3τ/2) a.s.

This also completes the proof of Proposition 2.4 by using a similar argument as in the

end of the proof of Proposition 2.3. 2

Proposition 2.5 Under the assumptions of Proposition 2.2, we have

sup
0≤t≤1

sup
0≤y≤1

|V (y − [nt]−1V (y, nt), nt)− V (y, nt) + [nt]−1V (y, nt)J ′τ (y)
[nt]∑

i=1

Hτ (ηi)/τ !|
= O(n1−3τD/2(L(n) log log n)3τ/2) a.s., n →∞,

(2.13)

and

lim sup
n→∞

nτD−1(L(n) log log n)−τ sup
0≤t≤1

sup
0≤y≤1

|V (y − [nt]−1V (y, nt), nt)− V (y, nt)|

= lim sup
n→∞

nτD−1(L(n) log log n)−τ sup
0≤t≤1

sup
0≤y≤1

|[nt]−1V (y, nt)J ′τ (y)
[nt]∑

i=1

Hτ (ηi)/τ !|

= 2τ+1κ2τ
τ !(2−τD)(1−τD) a.s.

(2.14)

Proof. By (2.8) and (2.10) respectively, as n →∞, we have

sup
0≤y≤1

n−1|V (y, n)| = O((n−DL(n) log log n)τ/2) a.s.

and

sup
0≤y≤1

|Ûn(y)− y| = O((n−DL(n) log log n)τ/2) a.s.
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Hence, along the lines of the proof of Proposition 2.3, we first obtain (2.13) and (2.14)

with t = 1, and then a similar argument as in the end of the proof of Proposition 2.3

yields (2.13) and (2.14) as stated. 2

2.2 Strong approximations of sequential uniform Bahadur-Kiefer pro-
cess

A direct application of Corollary 2.1 and (2.5) leads to a strong approximation for

the sequential uniform Bahadur-Kiefer process R∗
n(y, t).

Theorem 2.1 Under the assumptions of Corollary 2.1, as n →∞, we have

sup
0≤t≤1

sup
0≤y≤1

|R∗
n(y, t)− (V (y, nt)− V (Û[nt](y), nt))|

= sup
0≤t≤1

sup
0≤y≤1

|dn(αn(y, t)− un(y, t))− (V (y, nt)− V (Û[nt](y), nt))|
= O(n1−νp/2−τD/4+εLτ/2(n)) a.s.

Next we reformulate Theorem 2.1 as follows.

Theorem 2.2 Under the assumptions of Proposition 2.2, as n →∞, we have

sup
0≤t≤1

sup
0≤y≤1

∣∣∣∣∣∣∣
[nt]R∗

n(y, t)− Jτ (y)J ′τ (y)




[nt]∑

i=1

Hτ (ηi)/τ !




2
∣∣∣∣∣∣∣

= O(n2−νp/2−τD/4+εLτ/2(n)) a.s.

Proof. Propositions 2.4-2.5 and Theorem 2.1 imply the result. 2

These strong approximations readily yield weak convergence and laws of the iterated

logarithm for the process R∗
n(y, t).

Theorem 2.3 Under the assumptions of Proposition 2.2, as n →∞, we have

nτD−2L−τ (n)[nt]R∗
n(y, t) D−→ 2

(2− τD)(1− τD)
Jτ (y)J ′τ (y)Y 2

τ (t)

in the space D[0, 1]2, equipped with sup-norm, where Yτ (t) is as in Theorem A.
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Proof. From Theorem 5.6 of Taqqu (1979), as n →∞, we conclude

d−1
n

[nt]∑

i=1

Hτ (ηi)/τ ! D−→
√

2
(2− τD)(1− τD)

Yτ (t)

in D[0, 1]. Now Theorem 2.3 follows from Theorem 2.2. 2

In the light of Theorems 2.2-2.3 we have the following

Theorem 2.4 Under the assumptions of Proposition 2.2, we have

lim sup
n→∞

nτD−2(L(n) log log n)−τ sup
0≤t≤1

sup
0≤y≤1

|[nt]R∗
n(y, t)| = 2τ+1κ2τ

τ !(2− τD)(1− τD)
a.s.

(2.15)

as well as

nτD−2L−τ (n) sup
0≤t≤1

sup
0≤y≤1

|[nt]R∗
n(y, t)| D−→ 2κ2τ

(2− τD)(1− τD)
sup

0≤t≤1
Y 2

τ (t), n →∞.

(2.16)

Proof. (2.15) follows from Theorem 2.2 and the law of the iterated logarithm (2.7)

for
∑[nt]

i=1 Hτ (ηi)/τ !. As to (2.16), it results from Theorem 2.3 directly. 2

Denote the Lp-norm of a function f on [0, 1]2 by

‖f‖p =
(∫ 1

0

∫ 1

0
|f(y, t)|pdydt

)1/p

, 1 ≤ p < ∞.

A straightforward Lp-version of Theorem 2.2 for the sequential uniform Bahadur-Kiefer

process R∗
n(y, t) results in

Theorem 2.5 Under the assumptions of Proposition 2.2, we have

lim sup
n→∞

nτD−2(L(n) log log n)−τ‖[nt]R∗
n‖p =

2τ+1‖JτJ
′
τ‖p

τ !(2− τD)(1− τD)
a.s.

as well as

nτD−2L−τ (n)‖[nt]R∗
n‖p

D−→ 2‖JτJ
′
τ‖p

(2− τD)(1− τD)
‖Y 2

τ ‖p, n →∞.
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This is in contrast with the Lp-theory of the Bahadur-Kiefer process in the i.i.d.

case in Csörgő and Shi (1998, 2001) which deviates substantially from its Kiefer (1967,

1970) sup-norm theory. For a review of this matter, we refer to Csáki et al. (2002).

For the sake of comparison to the latter theories, Theorems 2.1-2.5 above should be

read with t = 1. For strong approximations in sup-norm of the sequential uniform

Bahadur-Kiefer process in the i.i.d. case, we refer to Csörgő and Szyszkowicz (1998).

3 Asymptotics of the uniform Vervaat error process

In support of studying the sequential uniform Vervaat error process, we first derive

the weak convergence of the sequential uniform Vervaat process Vn(·, ·). This can be

easily done via Theorems 2.2-2.3.

Theorem 3.1 Under the assumptions of Proposition 2.2, as n →∞, we have

Vn(s, t) D−→ 2
(2− τD)(1− τD)

J2
τ (s)Y 2

τ (t)

in the space D[0, 1]2, equipped with sup-norm, where Yτ (t) is as in Theorem A.

Proof. Theorem 2.3 and integration by parts yield

Vn(s, t) = 2d−2
n [nt]

∫ s

0
R∗

n(y, t)dy
D−→ 4

(2−τD)(1−τD)

(∫ s

0
Jτ (y)J ′τ (y)dy

)
Y 2

τ (t)

= 2
(2−τD)(1−τD)J

2
τ (s)Y 2

τ (t). 2

Theorem 3.1 and Corollary A imply that the sequential uniform Vervaat process

Vn(s, t) and the process α2
n(s, t) have the same weak limiting process. Thus, just like

in the i.i.d. case, it makes sense to consider the deviation of the two processes, i.e., the

sequential uniform Vervaat error process Qn as in (1.10), namely

Qn(s, t) = 2d−2
n [nt]

∫ s

0
R∗

n(y, t)dy − α2
n(s, t), 0 ≤ s ≤ 1, 0 ≤ t ≤ 1.
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Unlike in the i.i.d. case (cf. Csáki et al. (2002)), we shall see that Qn(s, 1), as well

as its sequential version Qn(s, t), do converge weakly, and in particular to a random

process which is a multiplication of a non-random function with the cube of random

process Yτ (t) defined in Theorem A.

Proposition 3.1 Under the assumptions of Proposition 2.2, we have

sup
0≤t≤1

sup
0≤s≤1

[nt]|Qn(s, t)− Zn(s, t)| = O(n1−νp/2+τD/4+ε(log log n)τ/2), a.s.

where {Zn(s, t), 0 ≤ s, t ≤ 1, n = 1, 2, · · ·} is defined by

Zn(s, t) = 2d−2
n V (s, nt)

∫ 1

0

(
V (s− w[nt]−1V (s, nt), nt)− V (s, nt)

)
dw. (3.1)

Proof. We proceed à la the lines of the proofs of Lemmas 3.1 and 3.2 of Csáki et al.

(2002). Let

An(s, t) = 2d−1
n [nt]

∫ s

Û[nt](s)
(αn(y, t)− αn(s, t)) dy, 0 ≤ s, t ≤ 1, n = 1, 2, · · · . (3.2)

It follows from Lemma 3.1 of Csáki et al. (2002) that

Qn(s, t) = An(s, t)− d−2
n (R∗

n(s, t))2.

Now (2.15) with t = 1 yields that, when n →∞,

sup
0≤s≤1

n|Qn(s, 1)−An(s, 1)| = O(n1−τDLτ (n)(log log n)2τ ) a.s.

By a similar fashion as in the end of the proof of Proposition 2.1, as n →∞, we get

sup
0≤t≤1

sup
0≤s≤1

[nt]|Qn(s, t)−An(s, t)| = O(n1−τDLτ (n)(log log n)2τ ) a.s.

Hence, it suffices to show that, as n →∞,

sup
0≤t≤1

sup
0≤s≤1

[nt]|An(s, t)− Zn(s, t)| = O(n1−νp/2+τD/4+ε(log log n)τ/2) a.s.
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Changing variable y = s− w(s− Û[nt](s)) = s− w[nt]−1dnun(s, t) in (3.2), we get

An(s, t) = 2un(s, t)
∫ 1

0

(
αn(s− w[nt]−1dnun(s, t))− αn(s, t)

)
dw.

Corollary 2.1 and (2.9), as n →∞, yield

An(s, t) = 2d−1
n un(s, t)

∫ 1

0

(
V (s− w[nt]−1dnun(s, t), nt)− V (s, nt)

)
dw

+O(n−νp/2+τD/4+ε(log log n)τ/2) a.s.,

(3.3)

uniformly in s, t ∈ [0, 1]. For all 0 ≤ w ≤ 1, according to Proposition 2.4, as n → ∞,

we have uniformly in s, t ∈ [0, 1]

V (s− w[nt]−1dnun(s, t), nt) = V (s− w[nt]−1V (s, nt), nt)

+O(n1−3τD/2(L(n) log log n)3τ/2) a.s.

Inserting this into (3.3) and applying (2.9) again, we obtain uniformly in s, t ∈ [0, 1]

An(s, t) = 2d−1
n un(s, t)

∫ 1

0

(
V (s− w[nt]−1V (s, nt), nt)− V (s, nt)

)
dw

+O(n−νp/2+τD/4+ε(log log n)τ/2) + O(n−τDLτ (n)(log log n)2τ ) a.s.

Consequently, as n →∞, uniformly in s, t ∈ [0, 1],

An(s, t) = 2d−1
n un(s, t)

∫ 1

0

(
V (s− w[nt]−1V (s, nt), nt)− V (s, nt)

)
dw

+O(n−νp/2+τD/4+ε(log log n)τ/2) a.s.

(3.4)

Now, from Proposition 2.2, as n →∞,

2d−1
n un(s, t) = 2d−2

n V (s, nt) + O(n−1(log log n)τ ) a.s. (3.5)

uniformly in 0 ≤ s, t ≤ 1. On the other hand, applying (2.14) to the integrand in (3.4),

we arrive at

∫ 1

0

(
V (s− w[nt]−1V (s, nt), nt)− V (s, nt)

)
dw = O(n1−τD(L(n) log log n)τ ) a.s.

uniformly in 0 ≤ s, t ≤ 1. Inserting this and (3.5) into (3.4) yields that, as n →∞,

[nt]|An(s, t)− Zn(s, t)| = O(n1−νp/2+τD/4+ε(log log n)τ/2) a.s.
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uniformly in 0 ≤ s, t ≤ 1. This concludes the proof of Proposition 3.1. 2

Due to Proposition 2.5, we present the following conclusion.

Proposition 3.2 Under the assumptions of Proposition 2.2, we have

sup
0≤t≤1

sup
0≤s≤1

|Zn(s, t) + 2d−2
n [nt]−1(V (s, nt))2J ′τ (s)

[nt]∑

i=1

Hτ (ηi)/τ !|

= O(n−τDLτ (n)(log log n)2τ ) a.s.

Proof. By (3.1) and Proposition 2.5, we obtain

sup
0≤t≤1

sup
0≤s≤1

|Zn(s, t) + 2d−2
n [nt]−1(V (s, nt))2J ′τ (s)

[nt]∑

i=1

Hτ (ηi)/τ !|
= sup

0≤t≤1
sup

0≤s≤1
|2d−2

n V (s, nt)·
∫ 1

0



V (s− w[nt]−1V (s, nt), nt)− V (s, nt) + w[nt]−1V (s, nt)J ′τ (s)

[nt]∑

i=1

Hτ (ηi)/τ !



 dw|

≤ sup
0≤t≤1

sup
0≤s≤1

|2d−2
n V (s, nt)|·

sup
0≤t≤1

sup
0≤s,w≤1

|V (s− w[nt]−1V (s, nt), nt)− V (s, nt) + w[nt]−1V (s, nt)J ′τ (s)
[nt]∑

i=1

Hτ (ηi)/τ !|

= O(n−τDLτ (n)(log log n)2τ ) a.s.

This completes the proof. 2

The main conclusions of this section are as follows.

Theorem 3.2 Under the assumptions of Proposition 2.2, as n →∞, we have

nτD/2−1L−τ/2(n)[nt]Qn(s, t) D−→ 25/2 ((2− τD)(1− τD))−3/2 J2
τ (s)J ′τ (s)Y

3
τ (t)

in the space D[0, 1]2, equipped with sup-norm, where Yτ (t) is as in Theorem A.

Proof. It follows from Theorem 5.6 of Taqqu (1979) and Propositions 3.1-3.2, 2

As a consequence of Propositions 3.1-3.2 and Theorem 3.2 we have the following

results.
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Theorem 3.3 Under the conditions of Proposition 2.2, we have

lim sup
n→∞

nτD/2−1L−τ/2(n)(log log n)−3τ/2 sup
0≤t≤1

sup
0≤s≤1

|[nt]Qn(s, t)|
= 2(3τ+5)/2κ3τ (τ !(2− τD)(1− τD))−3/2 a.s.,

and, as n →∞,

nτD/2−1L−τ/2(n) sup0≤t≤1 sup0≤s≤1 |[nt]Qn(s, t)|

D−→ 25/2κ3τ ((2− τD)(1− τD))−3/2 sup0≤t≤1 |Y 3
τ (t)|.

Moreover,
lim sup

n→∞
nτD/2−1L−τ/2(n)(log log n)−3τ/2‖[nt]Qn‖p

= 2(3τ+5)/2‖J2
τ J ′τ‖p (τ !(2− τD)(1− τD))−3/2 a.s.,

and, as n →∞,

nτD/2−1L−τ/2(n)‖[nt]Qn‖p
D−→ 25/2‖J2

τ J ′τ‖p ((2− τD)(1− τD))−3/2 ‖Y 3
τ ‖p,

where, in both cases, Yτ is as in Theorem A.

Reading Theorems 3.2 and 3.3 with t = 1, they should be compared to Theorem

2.1, and Corollaries 2.1 and 2.2, of Csáki et al. (2002) in the i.i.d. case.

4 Sequential general Bahadur-Kiefer processes, Strong ap-
proximations

In this section we shall study the sequential general Bahadur-Kiefer process Rn(y, t)

in terms of the sequential uniform Bahadur-Kiefer process R∗
n(y, t).

The following Csáki-type law of the iterated logarithm (cf. Csáki (1977)) for the

sequential uniform quantile process plays a crucial role in comparing the two processes

ρn(y, t) and un(y, t).

Proposition 4.1 Assume that the assumptions of Proposition 2.2 hold, then as n →
∞, we have

sup
δn≤y≤1−δn

|un(y, 1)|2/J2
τ (y) = O((log log n)τ ) a.s.,
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where δn = (n−DL(n) log log n)τ .

Proof. Note that

sup
δn≤y≤1/2

∣∣∣u2
n(y, 1)− |d−1

n V (y, n)|2
∣∣∣ /y

≤ sup
0≤y≤1

|un(y, 1)− d−1
n V (y, n)|2 · δ−1

n + 2 sup
δn≤y≤1/2

|d−1
n V (y, n)|/y1/2

· sup
0≤y≤1

|un(y, 1)− d−1
n V (y, n)| · δ−1/2

n .

Assumption (A) and simple calculations yield

sup
δn≤y≤1/2

|Jτ (y)|/y1/2 = O(1), and sup
1/2≤y≤1−δn

|Jτ (y)|/(1− y)1/2 = O(1) (4.1)

for large enough n. Consequently, (2.4), (2.7) and (4.1) imply that, as n →∞,

sup
δn≤y≤1/2

∣∣∣u2
n(y, 1)− |d−1

n V (y, n)|2
∣∣∣ /y = O((log log n)τ ) a.s.

Similarly, as n →∞, we get

sup
1/2≤y≤1−δn

∣∣∣u2
n(y, 1)− |d−1

n V (y, n)|2
∣∣∣ /(1− y) = O((log log n)τ ) a.s.

This, in turn, results in

sup
δ≤y≤1−δn

∣∣u2
n(y, 1)− |d−1

n V (y, n)|2∣∣
y(1− y)

= O((log log n)τ ) a.s. (4.2)

On the other hand, by (2.8) and (4.1), we know that as n →∞

sup
δn≤y≤1−δn

|d−1
n V (y, n)|2/(y(1− y)) = O((log log n)τ ) a.s.

Thus, via (4.2), as n →∞ we arrive at

sup
δn≤y≤1−δn

|un(y, 1)|2/(y(1− y)) = O((log log n)τ ) a.s. (4.3)

Now (4.1) and (4.3) yield the result of Proposition 4.1. 2

In the light of Proposition 4.1, and Lemma 1 of Csörgő and Révész (1978) (cf.

Lemma 4.5.2 in Csörgő and Révész (1981)), it is natural to introduce the following

conditions:
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(i) F is twice differentiable on (a, b), where

a = sup{x : F (x) = 0}, b = inf{x : F (x) = 1}, −∞ ≤ a < b ≤ +∞;

(ii) F ′(x) = f(x) > 0 on (a, b);

(iii) for some 0 < γ < 1 + (τD)/(2− 2τD), where ν = min(D, 1− τD)/2, we have

sup
a<x<b

J2
τ (F (x))

|f ′(x)|
f2(x)

= sup
0<y<1

J2
τ (y)

|f ′(Q(y))|
f2(Q(y))

≤ γ;

(iv) A := limx↓af(x) < ∞, B := limx↑bf(x) < ∞;

(v) min(A,B) > 0, or

(v’) if A = 0 (resp. B = 0), then f is non-decreasing (resp. non-increasing) on an

interval to the right of a (resp. to the left of b).

Remark 4.1 Initially similar conditions were introduced in Csörgő and Révész (1981),

which were then further studied and utilized in Csörgő (1983), Csörgő et al. (1985),

Csörgő and Horváth (1993), Csörgő and Szyszkowicz (1998), Csörgő and Shi (2001),

and Csörgő and Zitikis (2002). Our condition (iii) is slightly stronger than the cor-

responding one in the i.i.d. case in the above mentioned works. It can actually be

replaced by the similarly stronger condition

(iii)∗ for some 0 < γ < 1 + (τD)/(2− 2τD), we have

sup
a<x<b

F (x)(1− F (x))
|f ′(x)|
f2(x)

= sup
0<y<1

y(1− y)
|f ′(Q(y))|
f2(Q(y))

≤ γ,

whenever (iii) is assumed in the sequel below.

With (iii)∗ in mind now, we mention examples of distributions which satisfy our

just mentioned condition (iii)∗, which is easier to calculate with than with (iii). For

example,

if F (x) = 1− e−x, x ≥ 0, then f(Q(y)) = 1− y, f ′(Q(y)) = −1. Therefore γ of (iii)

is equal to 1;

if F (x) = x, 0 < x < 1, then f(Q(y)) = 1, f ′(Q(y)) = 0. Then γ of (iii)∗ can be

1/2;
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if F (x) = Φ(x), −∞ < x < ∞, then f(Q(y)) = φ(Φ−1(y)), f ′(Q(y)) = −Φ−1(y)

φ(Φ−1(y)). Elementary calculations yield that

sup
0<y<1/2

y(1− y)| − Φ−1(y)|/φ(Φ−1(y)) ≤ 1 + ε

and

sup
1/2≤y<1

y(1− y)| − Φ−1(y)|/φ(Φ−1(y)) ≤ 1 + ε,

where ε (< (τD)/(2− 2τD)) is a small positive constant. Hence γ of (iii)∗ can be

selected from the interval (1, 1 + (τD)/(2− 2τD)).

The following Proposition studies the sup-norm distance between ρn(y, t) and un(y, t).

Proposition 4.2 Assume the conditions (i)–(iii) on F and the assumptions of Propo-

sition 2.2. Then, as n →∞, we have

sup
0≤t≤1

sup
δn≤y≤1−δn

|ρn(y, t)− d−1
n V (y, nt)| = O(n−τD/2Lτ/2(n)(log log n)τ ) a.s., (4.4)

where δn = (n−DL(n) log log n)τ . If, in addition to (i)–(iii), we also assume (iv) and

(v) (or (v’)). Then

sup
0≤t≤1

sup
0≤y≤1

|ρn(y, t)− d−1
n V (y, nt)| =





O
(
n−τD/2Lτ/2(n)(log log n)τ+1

)
, 0 < γ ≤ 1,

O
(
n(1−τD)γ+τD/2−1Lτγ−τ/2(n)(log n)(1+C)(γ−1)

)
, 1 < γ < 1 + τD

2(1−τD) ,
a.s.

(4.5)

where C > 0 is arbitrary.

Proof. Observe that a two-term Taylor expansion gives

ρn(y, 1) = d−1
n nf(Q(y))(Q(y)− Q̂n(y)) = d−1

n nf(Q(y))(Q(y)−Q(Ûn(y)))
= un(y, 1)− dn

2nu2
n(y) f ′(Q(θ3n(y)))

f3(Q(θ3n(y)))
f(Q(y)),

(4.6)

where |y − θ3n(y)| ≤ |y − Ûn(y)|.
By (4.1), arguing as in the proof of Theorem 4.5.6 of Csörgő and Révész (1981), we

arrive at

sup
0<θ3n(y)<1

J2
τ (θ3n(y))

|f ′(Q(θ3n(y)))|
f2(Q(θ3n(y)))

≤ γ,
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and

sup
δn≤y≤1−δn

f(Q(y))
f(Q(θ3n(y)))

≤ sup
δn≤y≤1−δn

[
θ3n(y)(1− y)
y(1− θ3n(y))

+
y(1− θ3n(y))
θ3n(y)(1− y)

]γ

< ∞.

These, together with Proposition 4.1 and (4.6), yield

sup
δn≤y≤1−δn

|ρn(y, 1)− un(y, 1)| = O(n−τD/2Lτ/2(n)(log log n)τ ) a.s.

Hence, arguing as in the end of the proof of Proposition 2.1, we conclude

sup
0≤t≤1

sup
δn≤y≤1−δn

|ρn(y, t)− un(y, t)| = O(n−τD/2Lτ/2(n)(log log n)τ ) a.s. (4.7)

Now (2.4) and (4.7) together imply (4.4).

Next, assuming now (iv) and (v), consider the one-term Taylor expansion as in

(1.6),

ρn(y, t) = un(y, t)
f(Q(y))

f(Q(θn(y, t)))
.

It follows from Assumption (A) in combination with (2.4) and (2.7) that

sup
0≤t≤1

sup
0≤y≤δn

|un(y, t)| = O(n−τDLτ (n)(log log n)3τ/2) a.s. (4.8)

and

sup
0≤t≤1

sup
1−δn≤y≤1

|un(y, t)| = O(n−τDLτ (n)(log log n)3τ/2) a.s.

Hence we have

sup
0≤t≤1

sup
0≤y≤δn

|ρn(y, t)− un(y, t)| = O(n−τD/2Lτ/2(n)(log log n)τ ) a.s. (4.9)

and

sup
0≤t≤1

sup
1−δn≤y≤1

|ρn(y, t)− un(y, t)| = O(n−τD/2Lτ/2(n)(log log n)τ ) a.s. (4.10)

Using (2.4), (4.7) and (4.9)-(4.10), we get

sup
0≤t≤1

sup
0≤y≤1

|ρn(y, t)− d−1
n V (y, nt)| = O(n−τD/2Lτ/2(n)(log log n)τ ) a.s. (4.11)
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Finally, we assume (iv) and (v’). In order to prove (4.5), it again suffices to show

that sup0≤t≤1 sup0≤y≤δn
|ρn(y, t)−un(y, t)| and sup0≤t≤1 sup1−δn≤y≤1 |ρn(y, t)−un(y, t)|

converge to zero a.s. under assumption (iv) and (v’). We demonstrate this only for the

first one of these, since for the second one a similar argument holds.

Along similar lines to the proof of Theorem 4.5.6 in Csörgő and Révész (1981), we

conclude

|ρn(y, 1)| ≤ |un(y, 1)|, if Ûn(y) ≥ y,

and if Ûn(y) < y, then

|ρn(y, 1)| ≤





O(nτD/2L−τ/2(n)δn), 0 < γ < 1,

O(nτD/2L−τ/2(n)δn log log n), γ = 1,

O(nτD/2L−τ/2(n)δγ
nnγ−1(log n)(1+C)(γ−1)), 1 < γ < 1 + τD

2(1−τD) ,
a.s.

where C > 0 is arbitrary. Note that −τD/2 < (1 − τD)γ + τD/2 − 1 < 0 if 1 < γ <

1 + (τD)/(2− 2τD). Hence, with the help of (4.8), we obtain

sup0≤y≤δn
|ρn(y, 1)− un(y, 1)| ={

O(n−τD/2Lτ/2(n)(log log n)τ+1), 0 < γ ≤ 1,

O(n(1−τD)γ+τD/2−1Lτγ−τ/2(n)(log n)(1+C)(γ−1)), 1 < γ < 1 + τD
2(1−τD)

a.s.

This, combined with Proposition 2.2 and (4.11), completes the proof of Proposition

4.2. 2

Note that

{Rn(y, t)−R∗
n(y, t), 0 ≤ y, t ≤ 1, n = 1, 2 · · ·}

= {−dn(ρn(y, t)− un(y, t)), 0 ≤ y, t ≤ 1, n = 1, 2 · · ·} (4.12)

The relationship (4.12) clearly indicates that the results we have summarized and

proved in Theorems 2.3-2.5 for R∗
n(y, t) can be immediately restated for the sequential

general Bahadur-Kiefer process Rn(y, t) via the strong invariance principle of Proposi-

tion 4.2. So we spell out and summarize these results for Rn(y, t) without proof.

Theorem 4.1 Assume the conditions (i)–(iii) on F and the assumptions of Proposi-

tion 2.2, then as n →∞, we have

nτD−2L−τ (n)[nt]Rn(y, t)I{δn ≤ y ≤ 1− δn} D−→ 2
(2− τD)(1− τD)

Jτ (y)J ′τ (y)Y 2
τ (t)
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in the space D[0, 1]2, equipped with the sup-norm, where δn = (n−DL(n) log log n)τ .

Moreover,

lim sup
n→∞

nτD−2(L(n) log log n)−τ sup
0≤t≤1

sup
δn≤y≤1−δn

|[nt]Rn(y, t)| = 2τ+1κ2τ

τ !(2− τD)(1− τD)
a.s.,

and, as n →∞,

nτD−2L−τ (n) sup
0≤t≤1

sup
δn≤y≤1−δn

|[nt]Rn(y, t)| D−→ 2κ2τ

(2− τD)(1− τD)
sup

0≤t≤1
Y 2

τ (t).

Theorem 4.2 In addition to the conditions in Theorem 4.1, we assume (iv) and

(v)(or (v’)), then as n →∞, we have

nτD−2L−τ (n)[nt]Rn(y, t) D−→ 2
(2− τD)(1− τD)

Jτ (y)J ′τ (y)Y 2
τ (t)

in the space D[0, 1]2, equipped with sup-norm, as well as

lim sup
n→∞

nτD−2(L(n) log log n)−τ sup
0≤t≤1

sup
0≤y≤1

|[nt]Rn(y, t)| = 2τ+1κ2τ

τ !(2− τD)(1− τD)
a.s.

and

nτD−2L−τ (n) sup
0≤t≤1

sup
0≤y≤1

|[nt]Rn(y, t)| D−→ 2κ2τ

(2− τD)(1− τD)
sup

0≤t≤1
Y 2

τ (t), n →∞.

Moreover,

lim sup
n→∞

nτD−2(L(n) log log n)−τ‖[nt]Rn‖p =
2τ+1‖JτJ

′
τ‖p

τ !(2− τD)(1− τD)
a.s.

and, as n →∞,

nτD−2L−τ (n)‖[nt]Rn‖p
D−→ 2‖JτJ

′
τ‖p

(2− τD)(1− τD)
‖Y 2

τ ‖p.
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fessor Pál Révész (Balatonlelle, Hungary, June 28-July 2, 1999), János Bolyai

Mathematics Society, Budapest, Vol. I, 389–426.
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