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no rma lity o f this e stima to r.
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1 I ntr oduction

Longitudinal data sets arise in biostatistics and life-time testing problems when
the responses of the individuals are recorded repeatedly over a period of time.
By controlling for individual differences, longitudinal studies are well-suited to
measure change over time. On the other hand, they require the use of special
statistical techniques because the responses on the same individual tend to be
strongly correlated. In the seminal paper [7], Liang and Zeger proposed the
use of generalized linear models (GLM) for the analysis of longitudinal data
and introduced the marginal models for which the regression of each marginal
response on the explanatory variables is modelled separately from the within-
individual correlation.

In a cross-sectional study, a GLM is used when there are reasons to believe
that each response yi depends on an observable vector xi of covariates. Typically
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this dependence is specified by an unknown parameter β and a link function µ
via the relationship µi(β) = µ(x′

iβ), where µi(β0) is the mean of yi. For one-

dimensional observations, the maximum quasi-likelihood estimator β̂n is defined
as the solution of the equation

n
∑

i = 1

µ̇i(β)

vi(β)
(yi − µi(β)) = 0. (1)

where µ̇i is the derivative of µ and vi(β) is the variance of yi. Note that this
equation simplifies considerably if we assume that vi(β) = φiµ̇(x

′
iβ), with a

nuisance scale parameter φi. In fact (1) is a genuine likelihood equation if
the yi’s are independent with densities c(yi, φi) exp{φ−1

i [(x′
iβ)yi − b(x′

iβ)]}; the
asymptotic properties of the maximum likelihood estimator (MLE) have been
thouroghly investigated in [2] and [12].

In a longitudinal study, each observation yi is actually d-dimensional and its
components (yi1, . . . , yid) represent repeated measurements at different times
for subject i. The approach proposed by Liang and Zeger is to impose the usual
assumptions of a GLM for each marginal scalar observation yit (considering the
regression on a p-dimensional design vector xit) and to model separately the
correlation within-individual. If these correlation matrices are known (but the
entire likelihood is not specified), then the d-dimensional version of (1) becomes
a generalized estimating equation (GEE).

In this article we prove the existence, consistency and asymptotic normality
of a sequence of estimators, defined as solutions (roots) of GEEs. We work
within the nonparametric set-up of Liang and Zeger, which makes our results
stronger than those of [2], [12] even for GLM (d = 1). Throughout this article,
we consider that the residuals form a martingale difference sequence, which is a
generalization of the independence assumption used in [2], [7], [10], [15].

Since the GEE is not the derivative of an equation, most of the technical
difficulties surface when proving the asymptotic existence of roots (REEs) of
such general estimating equations. General results available in the literature
for the existence of REEs involve conditions which are difficult to verify (e.g.
Theorem 12.1 of [4]). In this article we use a refinement of Theorem 1 of
[15], which also appears in [10] in a slightly different formulation. To apply it,
we introduced conditions (E-p) (respectively (E-a.s)), which require the weak
(respectively strong) equicontinuity of the derivatives of the GEE functions with
respect to the multidimensional parameter. For GLM, these conditions are
satisfied if the link functions are equicontinuous and a boundedness condition
(B) (on the extreme eigenvalues of the design matrix) holds. We note that our
condition (B) is weaker than the corresponding condition (Sδ) considered in [2].

In order to verify (E-p) for GEE, we employ a technique borrowed from the
proof of tightness of multiparameter processes with continuous sample paths,
and we impose some conditions on the rate of growth of some scalar functions
associated with the link functions. These conditions are satisfied in the unidi-
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mensional case (i.e. p = 1) and in the case of the longitudinal linear model.
In order to verify (E-a.s), we impose the rather strong assumption that the
recorded observations are bounded, which is satisfied for categorical observa-
tions with a finite number of values. This assumption is not needed for the
longitudinal linear model.

In order to obtain the asymptotic normality in our more general context, we
assume that the residuals are bounded in L2+ δ. This condition does not appear
in [2], [12] for GLM. Finally, our Lemma 2 leads to a direct proof of the strong
consistency of the least square estimator (LSE); see [6].

The paper is organized as follows: in Section 2 we introduce the framework
and the assumptions and we state the main results. In Section 3 we give the
formal proofs of these results, while in Section 4 we examine the conditions
which will lead to the verification of the assumptions. Appendix A includes
some general results for estimating equations and in Appendix B we give some
auxiliary matrix analysis results which we found useful.

2 Statements of the r esults

If A is a p×pmatrix, we will denote with ‖ A ‖ its spectral norm, with ‖ A ‖E its
Euclidean norm and with tr(A) its trace. If A is a symmetric matrix, we denote
with λm in (A), λm ax(A) its minimum, maximum eigenvalues. For a p-dimensional
vector x, we will use the Euclidean norm ‖ x ‖:= (x′x)1/2 = tr(xx′)1/2.

For any matrix A, ‖ A ‖= {λm ax(A
′A)}1/2 and ‖ A ‖E= {tr(A′A)}1/2. In

particular, if A is symmetric and nonnegative definite, then ‖ A ‖= λm ax(A).
Throughout the sequel, we will use the notation A ≤ B if B −A is nonneg-

ative definite; in this case, tr(A) ≤ tr(B). Moreover, if A is symmetric and B is
symmetric and nonnegative definite such that −B ≤ A ≤ B, then ‖ A ‖≤‖ B ‖.

We let A1/2L (A1/2R) be the left (respectively right) square root of the
positive definite matrix A, i.e. A1/2LA1/2R = A and A1/2L = (A1/2R)′. We set
A−1/2L = (A1/2L)−1 and A−1/2R = (A1/2R)−1.

Let yi := (yi1, . . . , yid)
′; i = 1, . . . , n be a longitudinal data set consisting of

n respondents, where the components of yi represent measurements at different
times from subject i. In the marginal model that we consider the correlation
matrix of yi is denoted by Ri and the marginal expectations and variances are
specified in terms of the regresion parameter β through

µit(β) := Eβ(yit) = µ(x′
itβ), Varβ(yit) = φiµ̇(x

′
itβ)

where xit are p× 1 vectors of covariates and φi > 0 are dispersion parameters.
The link function µ is assumed to be continuously differentiable with µ̇ > 0.
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Examples:
1. in the logistic regression for binary data, µ(y) = exp(y)/[1 + exp(y)];
2. in the log regression for count data, µ(y) = exp(y);
3. in the linear regression for continuous data, µ(y) = y.

Let µi(β) := Eβ(yi), Vi(β) := Varβ(yi) and ǫi(β) := yi − µi(β)). If the

matrices Ri are known, then the maximum quasi-likelihood estimator β̂n is the
solution of the equation (see [13], p.315)

n
∑

i = 1

µ̇i(β)
′Vi(β)

−1ǫi(β) = 0. (2)

Note that µ̇i(β) = Di(β)Xi and Vi(β) = φiDi(β)
1/2RiDi(β)

1/2, where Di(β) is
a d× d diagonal matrix whose (t, t) element is µ̇(x′

itβ) and Xi is a d× p matrix
whose t-th row is x′

it.
In the sequel the unknown parameter β lies in an open set B ⊆ Rp and β0 is

the true value of this parameter. Our work is under the following assumption:

Assumption (A)

(i) L := maxt= 1,...,d supi≥1 ‖ xit ‖< ∞

(ii) φi = 1, ∀i

(iii) Ri = R, ∀i, where R = (rtl)t,l = 1,...,d is a (known) symmetric positive
definite matrix

(iv) µ is twice continuously differentiable

(v) infi µ̇(x
′
itβ0) > 0, ∀t = 1, . . . , d

(vi) ǫi := ǫi(β0), i ≥ 1 is a (d-dimensional) martingale difference sequence, i.e.
E(ǫi|Fi−1) = 0, ∀i ≥ 1, where Fi is the σ-field generated by ǫ1, . . . , ǫi.

The quasi-likelihood equation (2) can be written as

sn(β) :=

n
∑

i= 1

ui(β) = 0 (3)

where ui(β) = X ′
iDi(β)

1/2GDi(β)
−1/2ǫi(β) =

∑d
t,l = 1 gtlxithitl(β)ǫil(β), with

G := R−1 = (gtl)t,l = 1,...,d and hitl(β) := [µ̇(x′
itβ)/µ̇(x

′
ilβ)]

1/2, which is well-
defined by (A). Note that ui := ui(β0), i ≥ 1 is a (p-dimensional) martingale
difference sequence. The function sn(β) is called the quasi-score function.
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We denote with Zi(β) the d×pmatrix whose t-th row is zit(β)
′ :=

√

µ̇(x′
itβ)x

′
it,

i.e. Zi(β) = Di(β)Xi. Then the quasi-information matrix is

Fn(β) := Var[sn(β)] =

n
∑

i= 1

E[ui(β)ui(β)
′] =

n
∑

i= 1

X ′
iDi(β)

1/2GDi(β)
1/2Xi

=

n
∑

i= 1

Zi(β)
′GZi(β) =

n
∑

i = 1

d
∑

t,l = 1

gtlzit(β)zil(β)
′

Note that E[ṡn(β)] = −Fn(β), since ṡn(β) = Hn(β)− Fn(β) with

Hn(β) :=

n
∑

i= 1

d
∑

t,l = 1

gtlxitḣitl(β)ǫil(β).

As it is the normal practice in this set-up, we will drop the argument β0 in
Di(β0), Zi(β0), Fn(β0), etc.
The asymptotic behaviour of the extreme eigenvalues of the matrix Fn is closely
related to those of the matrices Bn :=

∑n
i = 1 Z

′
iZi =

∑d
i= 1

∑d
t,l = 1 zitz

′
it and

An :=
∑n

i= 1 X
′
iXi =

∑n
i= 1

∑d
t= 1 xitx

′
it, since

λm in (G) · Bn ≤ Fn ≤ λm ax(G) · Bn (4)

(using Lemma 5, Appendix B) and

m · An ≤ Bn ≤ M ·An (5)

where m := mint= 1,...,d infi µ̇(x
′
itβ0),M := maxt= 1,...,d supi µ̇(x

′
itβ0). In par-

ticular, limn λm in (Fn) = ∞ if and only if limn λm in (An) = ∞; in this case
λm in (Fn) > 0 (i.e. Fn is positive definite) for n ≥ N .

We let Bδ(β0) := {β; ‖ β − β0 ‖< δ} be neighbourhoods of β0. We will use
the following conditions:

(D) Divergence: limn → ∞ λm in (An) = ∞.

(E-p) Equicontinuity in probability: for every ǫ > 0

lim
δ → 0

lim sup
n → ∞

P ( sup
β ∈ Bδ(β0)

‖ F−1
n (ṡn(β)− ṡn(β0)) ‖≥ ǫ) = 0.

(E-a.s) Equicontinuity almost surely: there exists an open neighbourhood U of
β0 such that (F−1

n ṡn(β))n≥N is equicontinuous on U at β0 a.s.

(V) Convergence of the normed conditional variance: Qi
P→ 0, where

Qi := V
−1/2L
i E[ǫiǫ

′
i|Fi−1]V

−1/2R
i − I.
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(N) Continuity: for every ǫ > 0

lim
δ → 0

lim sup
n → ∞

P ( sup
β ∈ Bδ(β0)

‖ Wn(β)− I ‖≥ ǫ) = 0

where Wn(β) := −F
−1/2L
n ṡn(β)F

−1/2R
n .

Remarks: (D) is a sufficient condition for the strong consistency of the
least squares estimator in the linear model (Theorem 1 of [6]). This condition
has also been considered for the strong consistency of the MLE in a GLM with
regressors with a compact range (Corollary 1 of [2]; Theorem 3 of [12]).

Conditions (E-p) (respectively (E-a.s)) are new in this framework. These
conditions allow us to use an inverse function argument (see the proof of The-
orem 4, Appendix A) to obtain the asymptotic (respectively almost sure) exis-
tence and the weak (respectively strong) consistency of a solution of equation
(3). Unlike [2] and [12], we can not use convexity arguments to obtain this
solution since we do not assume that sn(β) is a gradient.

Condition (V) allows us to prove the asymptotic normality of the quasi-score
function using a martingale central limit theorem. This condition is automati-
cally satisfied in the case of independent observations.

Condition (N) is an extension to longitudinal data of a similar condition
that has been introduced for the asymptotic normality of the MLE in a GLM
(Theorem 3 of [2]; Theorem 1 of [12]).

We state now our asymptotic results.

Theorem 1 Under (D) and (E-p), there exists a sequence (β̂n)n of random
variables such that
(i) P (sn(β̂n) = 0) → 1 and

(ii) β̂n
P→ β0.

Theorem 2 Under (D) and (E-a.s), there exists a sequence (β̂n)n of random
variables and a random number n0 such that
(i) P (sn(β̂n) = 0 for all n ≥ n0) = 1 and

(ii) β̂n → β0 a.s.

Lemma 1 Suppose that supi≥1 E[ ‖ ǫi ‖2+ δ |Fi−1] < ∞ for some δ > 0. Under
(D) and (V), we have:

F−1/2L
n sn →d N(0, I). (6)

Theorem 3 Suppose that supi≥1 E[ ‖ ǫi ‖2+ δ |Fi−1] < ∞ for some δ > 0.
Under (D), (V) and (N), we have

F 1/2R
n (β̂n − β0) →d N(0, I)

for any sequence (β̂n)n with P (sn(β̂n) = 0) → 1 and β̂n →P β0.
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3 P r oofs

We will need the following version of the (multivariate) martingale strong law
of large numbers.

Lemma 2 Let (sn)n≥1 be a (p-dimensional) zero-mean, square-intergrable mar-
tingale and (An)n≥1 be a sequence of nonnegative definite p × p matrices with
An ≤ An + 1 and limn λm in (An) = ∞. If there exists a constant c > 0 such that

Var(sn) ≤ cAn, for all n ≥ N

then A−1
n sn → 0 a.s.

Proof: We will consider only the case c = 1. The general case can be reduced
to the case c = 1 for the matrices Bn := cAn.

Let un := sn − sn−1 (s0 = 0). By Theorem 12.4 of [4], it is enough to prove
that

∑

n≥N E[‖ A−1
n un ‖2] < ∞. This follows from Lemma 4 (Appendix B)

since E[‖ A−1
n un ‖2] = tr{A−1

n E[unu
′
n]A

−1
n } and Var(sn) =

∑n
i= 1 E[uiu

′
i]. 2

Remark: The previous lemma leads to a direct proof for the strong consis-
tency of the LSE β̂n in the classical linear model yi = x′

iβ + ǫi, i ≥ 1, when
the residuals (ǫi)i≥1 form an L2-bounded martingale difference sequence: if

λm in (
∑n

i= 1 xix
′
i) → ∞, then β̂n−β0 = (

∑n
i = 1 xix

′
i)

−1(
∑n

i = 1 xiǫi) → 0 a.s. since
Var(

∑n
i = 1 xiǫi) ≤ C

∑n
i = 1 xix

′
i, where C := supi E[ǫ

2
i ].

Proofs of Theorems 1, 2: These results will follow by Theorem 4, respec-
tively Theorem 5 (Appendix A) once we verify Assumptions 1, 2, respectively
Assumptions 1’, 2’, for the functions

Gn(β) := F−1
n sn(β), n ≥ N.

Under (D), Gn(β0) = F−1
n sn → 0 a.s. (by Lemma 2), i.e. Assumption 1’ is

verified; consequently Assumption 1 is verified. Note that Gn are continuously
differentiable on B. Since Ġn(β) = F−1

n ṡn(β), Assumption 2.(a) is exactly (E-p)
and Assumption 2’.(a’) is exactly (E-a.s).

For Assumption 2.(b) we note that Ġn(β0) = F−1
n Hn − I, where I is the

identity matrix. We will prove that

F−1
n Hn → 0 a.s (7)

It will follow that with probability 1, there exists a random number N0(> N)
such that ‖ F−1

n Hn ‖< 1/2 for all n ≥ N0. Hence, with probability 1, for every
n ≥ N0, Ġn(β0) is invertible with

‖ Ġn(β0)
−1 ‖≤ 1

1− ‖ F−1
n Hn ‖

≤ 2.
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Assumption 2.(b) is verified with λ = 1/4.
In order to prove (7), we let Hn,j be the j-th column ofHn. Note thatHn,j =

∑n
i= 1 vi,j , where vi,j :=

∑d
t,l = 1 gtlxitḣitl,j(β0)ǫil, i ≥ 1 is a (p-dimensional)

martingale difference sequence; here ḣitl,j(β0) denotes the derivative of hitl

with respect to βj at β0, which is well-defined by (A). Note that ḣitl(β) =

h
(1)
itl (β)x

′
it − h

(2)
itl (β)x

′
il with

h
(1)
itl (β) =

µ̈(x′
itβ)

2µ̇(x′
itβ)

1/2µ̇(x′
ilβ)

1/2
, h

(2)
itl (β) =

µ̈(x′
ilβ)µ̇(x

′
itβ)

1/2

2µ̇(x′
ilβ)

3/2
. (8)

Hence, there exists a constant C such that |ḣitl,j(β0)| ≤ C, ∀i. Using Lemma 5
(Appendix B), we have

E[vi,jv
′
i,j ] =

d
∑

t1,t2 = 1

qit1t2xit1x
′
it2 ≤ λm ax(Qi) ·

d
∑

t= 1

xitx
′
it

whereQi is the matrix with entries qit1t2 :=
∑

l1,l2
gt1l1gt2l2 ḣit1l1,j(β0)ḣit2l2,j(β0)

cov(yil1 , yil2). Note that |qit1t2 | ≤ C1 for a constant C1; hence λm ax(Qi) ≤ dC1,
by Lemma 6 (Appendix B).

Using (4) and (5), Var[Hn,j ] =
∑n

i = 1 E[vi,jv
′
i,j ] ≤ dC1·An ≤ dC1·[mλm in (G)]

−1·
Fn. Hence F−1

n Hn,j → 0 a.s., using again Lemma 2. 2

Proof of Lemma 1: Note that (6) is equivalent to: ∀y ∈ Rp

y′sn√
y′Fny

→d N(0, 1) (9)

This follows by the Cramèr-Wold theorem and the invariance property un-
der orthogonal transformations of a sequence of asymptotically normal ran-

dom vectors (see (3.4) of [2]): we have (y′sn)/
√
y′Fny = y′P ′

nF
−1/2L
n sn, where

Pny := (F
1/2R
n y)/

√
y′Fny is an orthogonal transformation.

In order to prove (9) we will use the martingale central limit theorem with
conditional Liapunov condition (Corollary 3.1 of [3]). Therefore, we have to
verify the following two conditions:

1

(y′Fny)1+ δ/2

n
∑

i = 1

E[ |y′ui|2+ δ|Fi−1] → 0. (10)

1

y′Fny

n
∑

i = 1

E[(y′ui)
2|Fi−1] →P 1 (11)

We have ui = Z ′
iGD

−1/2
i ǫi and

n
∑

i = 1

E[ |y′ui|2+ δ |Fi−1] ≤
n
∑

i= 1

‖ Ziy ‖2+ δ · ‖ GD
−1/2
i ‖2+ δ ·E[ ‖ ǫi ‖2+ δ |Fi−1]
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≤ C1 ·
n
∑

i = 1

‖ Ziy ‖2+ δ (for a constant C1)

since GDi is a matrix whose entries are bounded in modulus. On the other
hand, y′Fny =

∑n
i= 1(Ziy)

′G(Ziy) ≥ λm in (G)
∑n

i= 1 ‖ Ziy ‖2, using Lemma 5
(Appendix B) with p = 1. Hence, condition (10) is verified:

1

(y′Fny)1+ δ/2

n
∑

i = 1

E[ |y′ui|2+ δ |Fi−1] ≤ C1 ·
1

[λm in (G)]1+ δ/2
·

∑n
i = 1 ‖ Ziy ‖2+ δ

(
∑n

i = 1 ‖ Ziy ‖2)1+ δ/2

≤ C1C
δ
2 · 1

[λm in (G)]1+ δ/2
· (

n
∑

i= 1

‖ Ziy ‖2)−δ/2 → 0

where C2 is a constant with ‖ Ziy ‖≤ C2, ∀i and we have used the fact that
∑n

i= 1 ‖ Ziy ‖2= y′Bny ≥ λm in (Bn) ‖ y ‖2→ ∞, by (D).
To verify (11), we note that y′Fny = E[(y′sn)

2] =
∑n

i= 1 E[(y
′ui)

2] and

n
∑

i = 1

E[(y′ui)
2|Fi−1]− y′Fny =

n
∑

i = 1

y′{E[uiu
′
i|Fi−1]− E[uiu

′
i]}y =

n
∑

i = 1

w′
iQiwi

with wi := V
1/2R
i D

−1/2
i GZiy and Qi as defined in (V). We have

an

n
∑

i = 1

w′
iwi ≤

n
∑

i= 1

w′
iQiwi ≤ bn

n
∑

i = 1

w′
iwi

where an := mini≤n λm in (Qi) and bn := maxi≤n λm ax(Qi). Hence |
∑n

i= 1 w
′
iQiwi|

≤ cn
∑n

i = 1 w
′
iwi = cny

′Fny, where cn := max{|an|, |bn|}. The proof is complete
since cn →P 0, by (V). 2

We need the following result for the proof of Theorem 3.

Lemma 3 Let (An)n be a sequence of p×p random matrices and Yn p-dimensional
random vectors such that Xn := AnYn, n ≥ 1 are square integrable in norm. If
An →P I and C := supn E[ ‖ Xn ‖2] < ∞, then Yn = Xn + oP (1).

Proof: Let Bn := I −An. Let d0 ∈ (0, 1) be arbitrary (to be chosen later). For
any η ∈ (0, 1) there exists n0 such that P (‖ Bn ‖< d0) ≥ 1 − η, ∀n ≥ n0. On
the event {‖ Bn ‖≤ d0}, An is nonsingular, A−1

n =
∑

k≥0 B
k
n,

‖ A−1
n − I ‖ ≤

∑

k≥1

‖ Bn ‖k =
‖ Bn ‖

1− ‖ Bn ‖ ≤ d0
1− d0

:= d

and ‖ Yn −Xn ‖≤‖ A−1
n − I ‖ · ‖ Xn ‖≤ d ‖ Xn ‖.
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By Chebyshev’s inequality, P (‖ Xn ‖< M) ≥ 1− (C/M2),∀M > 0. Hence

P (‖ Yn −Xn ‖< dM) ≥ P (‖ Bn ‖< d0 , ‖ Xn ‖< M)

≥ P (‖ Bn ‖< d0) + P (‖ Xn ‖< M)− 1

≥ 1− η − C

M2
, ∀n ≥ n0

Finally, letM1 > 0 and ǫ ∈ (0, 1) be arbitrary. PickM > 0 withM2 > C/ǫ. The
conclusion follows from the above inequality with η := ǫ− (C/M2), d := M1/M
and d0 := d/(1 + d). 2

Proof of Theorem 3: We focus on the event {sn(β̂n) = 0} whose probability
goes to 1. By the mean-value theorem for vector-valued functions

−sn =

[∫ 1

0

ṡn(β0 + t(β̂n − β0)) dt

]

(β̂n − β0)

and

F−1/2L
n sn =

[∫ 1

0

Wn(β0 + t(β̂n − β0))dt

]

F 1/2R
n (β̂n − β0)

with Wn as defined in (N). We claim that

∫ 1

0

Wn(β0 + t(β̂n − β0)) dt →P I (12)

To see this, let ǫ > 0, η > 0 be arbitrary. By (N), there exist δ and n1 such that

P (‖ Wn(β)− I ‖< ǫ, ∀β ∈ Bδ(β0)) ≥ 1− η/2, ∀n ≥ n1. Since β̂n →P β0, there

exists an integer n2 such that P (β̂n ∈ Bδ(β0)) ≥ 1− η/2, ∀n ≥ n2. We have

P (‖
∫ 1

0

Wn(β0 + t(β̂n − β0)) dt− I ‖< ǫ) ≥

P (‖ Wn(β)− I ‖< ǫ, ∀β ∈ Bδ(β0) and β̂n ∈ Bδ(β0)) ≥
P (‖ Wn(β)− I ‖< ǫ, ∀β ∈ Bδ(β0)) + P (β̂n(β0) ∈ Bδ(β0))− 1 ≥ 1− η

Note that E[‖ F
−1/2L
n sn ‖2] = tr{F−1/2L

n E[sns
′
n]F

−1/2R
n } = tr(I) = p, ∀n.

From Lemma 3, F
1/2R
n (β̂n − β0) = F

−1/2L
n sn + oP (1). The result follows from

Lemma 1, using Slutsky’s theorem. 2

4 Ver ification of the assumptions

In this section we will examine some conditions which lead to the verification of
condition (E-p), (E-a.s.) and (N) introduced in Section 2. We will suppose that
there exists K > L ‖ β0 ‖ such that infy ∈ [−K,K] µ̇(y) > 0, with L as defined in

10



Assumption (A). If we choose r ≤ (K/L)− ‖ β0 ‖ such that U := Br(β0) ⊆ B,
then |x′

itβ| ≤ L(r+ ‖ β0 ‖) ≤ K, ∀β ∈ U , i.e. x′
itβ ∈ [−K,K], ∀β ∈ U .

We begin by noting that if the eigenvalue ratio λm ax(An)/λm in (An) is bounded,
then (N) is equivalent to (E-p): to see this, note that F−1

n Hn → 0 a.s. and

F−1/2R
n (Wn(β)− I)F 1/2R

n = −F−1
n Hn + F−1

n (ṡn(β0)− ṡn(β)).

Now we examine conditions (E-p), (E-a.s.). For this purpose, we write

ṡn(β) = H(1)
n (β)−H(2)

n (β)− Fn(β)

where H
(1)
n (β) =

∑n
i = 1

∑d
t,l = 1 gtlh

(1)
itl (β)ǫil(β)xitx

′
it, H

(2)
n (β) =

∑n
i = 1

∑d
t,l = 1 gtl

h
(2)
itl (β)ǫil(β)xitx

′
il and h

(1)
itl , h

(2)
itl are given by (8). We will use the following

notations: ∆
(s)
itl (β1, β2) := h

(s)
itl (β2)ǫil(β2) − h

(s)
itl (β1)ǫil(β1) for s = 1, 2 and

∆
(3)
itl (β1, β2) := h

(3)
itl (β2) − h

(3)
itl (β1), where h

(3)
itl (β) =

√

µ̇(x′
itβ)

√

µ̇(x′
ilβ). We

let Φn := {1, . . . , n} × {1, . . . , d}.

We consider the following condition:

(B) lim supn → ∞ [λm ax(An)]
1/2/λm in (An) < ∞

Under (D), this condition is weaker than condition (Sδ) of [2] (or condition (D2)
of [12]), in which a power 1/2 + δ of λm ax(An) is considered.

Proposition 1 Suppose that ∃Cs, αs > 0; s = 0, 1, 2, 3 such that

|µil(β2)− µil(β1)| ≤ C0 ‖ β2 − β1 ‖ p
2
+ α0 (13)

|h(s)
itl (β2)− h

(s)
itl (β1)| ≤ Cs ‖ β2 − β1 ‖ p

2
+ αs (14)

∀i, ∀β1, β2 ∈ U . Then (B) implies (E-p).

Proof: The result will follow by Theorem 6 (Appendix A) once we prove that
∃C,α > 0 such that ∀n ≥ 1, ∀β1, β2 ∈ U

E[ ‖ F−1
n (ṡn(β2)− ṡn(β1)) ‖2E ] ≤ C ‖ β2 − β1 ‖p + α .

Using (B), it is enough to show that ∃C ′
s, α

′
s > 0 such that ∀n ≥ 1, ∀β1, β2 ∈ U

E[ ‖ H(s)
n (β2)−H(s)

n (β1) ‖2E ] ≤ C ′
s ‖ β2 − β1 ‖p+ α′

s · ‖ An ‖ (15)

for s = 1, 2 (and a similar inequality for Fn, without the E[ · ]).
Using the fact that E[ ‖ A ‖2E ] = tr[E(A′A)], we have

E[ ‖ H(1)
n (β2)−H(1)

n (β1) ‖2E ] = tr{
∑

(i1,t1),(i2,t2) ∈ Φn

s
(1)
(i1,t1),(i2,t2)

xi1t1x
′
i2t2}

11



where s
(1)
(i1,t1),(i2,t2)

:= (x′
i1t1

xi2t2)
∑

l1,l2
gt1l1gt2l2E[∆

(1)
i1t1l1

∆
(1)
i2t2l2

] and ∆
(1)
i1t1l1

:=

∆
(1)
i1t1l1

(β1, β2). After tedious computations we reach the conclusion that

E[∆
(1)
i1t1l1

∆
(1)
i2t2l2

] =

{

δi1t1l1δi2t2l2 if i1 �= i2
δit1l1δit2l2 + wit1l1t2l2 if i1 = i2 = i

where δitl := φitl(β2) − φitl(β1) with φitl(β) := h
(1)
itl (β)(µil(β) − µil(β0)), and

wit1l1t2l2 := [h
(1)
it1l1

(β2)− h
(1)
it1l1

(β1)][h
(1)
it2l2

(β2)− h
(1)
it2l2

(β1)]cov(yil1 , yil2). Hence

E[ ‖ H(1)
n (β2)−H(1)

n (β1) ‖2E ] = tr {
∑

(i1,t1),(i2,t2) ∈ Φn

r(i1,t1),(i2,t2)xi1t1x
′
i2t2

}

+
n
∑

i= 1

tr {
∑

t1,t2

vit1t2xit1x
′
it2} (16)

where r(i1,t1),(i2,t2) := (x′
i1t1

xi2t2)
∑

l1,l2
gt1l1gt2l2δi1t1l1δi2t2l2 and vit1t2 :=

(x′
it1

xit2)
∑

l1,l2
gt1l1gt2l2wit1l1t2l2 . By Lemma 5 (Appendix B)

∑

(i1,l1),(i2,l2) ∈ Φn

r(i1,t1),(i2,t2)xi1t1x
′
i2t2 ≤ 1

2
λm ax(R̃n) · An

∑

t1,t2

vit1t2xit1x
′
it2 ≤ 1

2
λm ax(Vi) ·

d
∑

t= 1

xitx
′
it

where R̃n is the matrix with entries r̃(i1,t1),(i2,t2) = r(i1,t1),(i2,t2) + r(i2,t2),(i1,t1)
with (i1, t1), (i2, t2) ∈ Φn and Vi is the matrix with entries vit1t2 .

From conditions (13) and (14) and Assumption (A), it follows that there
exists C4, α4 > 0 such that |r̃(i1,t1),(i2,t2)| ≤ 2C4 ‖ β2 − β1 ‖p+ α4 ; using Lemma

6 (Appendix B), it follows that λm ax(R̃n) ≤ 2dC4 ‖ β2 − β1 ‖p + α4 . Therefore

tr {
∑

(i1,t1),(i2,t2) ∈ Φn

r(i1,t1),(i2,t2)xi1t1x
′
i2t2} ≤ dC4 ‖ β2 − β1 ‖p+ α4 tr(An) (17)

The similar argument applied to the matrix Vi leads us to

tr {
∑

t1,t2

vit1t2xit1x
′
it2} ≤ dC5 ‖ β2 − β1 ‖p+ α5 tr{

∑

t

xitx
′
it} (18)

Inequality (15) follows from (16), (17) and (18), since tr(An) ≤ p ‖ An ‖.
A similar argument can be used for H

(2)
n (respectively for Fn) by writing

E[ ‖ H(2)
n (β)−H(2)

n (β0) ‖2E ] = tr{
∑

(i1,l1),(i2,l2) ∈ Φn

s
(2)
(i1,l1),(i2,l2)

xi1l1x
′
i2l2

}

where s
(2)
(i1,l1),(i2,l2)

:=
∑

t1,t2
(x′

i1t1
xi2t2)gt1l1gt2l2E[∆

(2)
i1t1l1

∆
(2)
i2t2l2

]. 2
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Proposition 2 Suppose that

sup
i

‖ yi ‖< ∞ a.s. (19)

Then (B) implies (E-a.s).

Proof: From the uniform continuity of the functions µ, µ̇, µ̈ on the interval
[−K,K] and the boundedness of the regressors xit, we obtain that (µ(x

′
itβ))i≥1,

(µ̇(x′
itβ))i≥1, (µ̈(x

′
itβ))i≥1 and hence (h

(3)
itl (β))i≥1 are equicontinuous on U at

β0. Moreover, since (ǫi)i≥1 are bounded in norm a.s. (by (19)), it follows

that (h
(s)
itl (β)ǫil(β))i; s = 1, 2 are equicontinuous on U at β0 a.s. Hence, with

probability 1, for every ǫ > 0 there exists a random number δ ∈ (0, r) such that

|∆(s)
itl (β, β0)| ≤ ǫ, ∀β ∈ Bδ(β0), ∀i, ∀t, ∀l, ∀s = 1, 2, 3.
Using (B) it is enough to show that ∃Cs > 0 such that ∀β ∈ Bδ(β0), ∀n

‖ H(s)
n (β)−H(s)

n (β0) ‖≤ Csǫ ‖ An ‖1/2

for s = 1, 2 (and a similar inequality for Fn).
Using the fact that ‖ A ‖=‖ A′A ‖1/2, we have

‖ H(1)
n (β)−H(1)

n (β0) ‖ = ‖
∑

(i1,t1),(i2,t2) ∈ Φn

s
(1)
(i1,t1),(i2,t2)

xi1t1x
′
i2t2 ‖1/2

where s
(1)
(i1,t1),(i2,t2)

:= (x′
i1t1

xi2t2)
∑

l1,l2
gt1l1gt2l2∆

(1)
i1t1l1

∆
(1)
i2t2l2

and ∆
(1)
i1t1l1

:=

∆
(1)
i1t1l1

(β, β0). By Lemma 5 (Appendix B)

1

2
λm in (S̃n) ·An ≤

∑

(i1,t1),(i2,t2) ∈ Φn

s
(1)
(i1,t1),(i2,t2)

xi1t1x
′
i2t2 ≤ 1

2
λm ax(S̃n) ·An

where S̃n is the matrix with entries s̃(i1,t1),(i2,t2) = s
(1)
(i1,t1),(i2,t2)

+ s
(1)
(i2,t2),(i1,t1)

with (i1, t1), (i2, t2) ∈ Φn. Note that |s̃(i1,t1),(i2,t2)| ≤ 2d2L2(maxt,l |gtl|)2ǫ2 :=
2C2

1ǫ
2; using Lemma 6 (Appendix B), it follows that |λm ax(S̃n)| ≤ 2dC2

1ǫ
2 and

|λm in (S̃n)| ≤ 2dC2
1ǫ

2. Hence for every β ∈ Bδ(β0) and for every n

‖ H(1)
n (β)−H(1)

n (β0) ‖ ≤
√
dC1ǫ· ‖ An ‖1/2 .

A similar argument can be used for H
(2)
n (respectively for Fn) by writing

‖ H(2)
n (β)−H(2)

n (β0) ‖ = ‖
∑

(i1,l1),(i2,l2) ∈ Φn

s
(2)
(i1,l1),(i2,l2)

xi1l1x
′
i2l2 ‖1/2

where s
(2)
(i1,l1),(i2,l2)

:=
∑

t1,t2
(x′

i1t1
xi2t2)gt1l1gt2l2∆

(2)
i1t1l1

∆
(2)
i2t2l2

. 2

We conclude this section by discussing some examples.
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Example 1. For p = 1, condition (13) of Proposition 1 is automatically satis-
fied, while condition (14) is satisfied if µ is three times continuously differentiable

on [−K,K]. This follows by the mean-value theorem, since the functions h
(s)
itl

are continuously differentiable with |ḣ(s)
itl (β)| ≤ C, ∀i,∀β ∈ U . Moreover, in this

case, (B) is equivalent to lim infn
∑n

i = 1

∑d
t= 1 x

2
it > 0, which is an immediate

consequence of (D).

Example 2. In the case of the linear regression, we have µ(y) = y; hence

h
(s)
itl ≡ 0 for s = 1, 2 and ṡn(β) = −Fn(β). In this case it can be checked directly
that (B) implies (E-p) and (E-a.s). Conditions (13) and (14) of Proposition 1,
respectively condition (19) of Proposition 2 are no longer needed.

A Gener al r esult for estimating equations

Let Gn(θ) := Gn(ω, θ), n ≥ 1 be p-variate random functions of θ ∈ Θ, where Θ
is an open subset of Rp which contains the true parameter θ0.

Assumption 1. Gn(θ0) →P 0.

Assumption 2. There exists an open neighbourhood U of θ0 such that with
probability 1, Gn(θ) is continuously differentiable on U , ∀n ≥ 1. Moreover,
(a) (Ġn(θ))n≥1 is “equicontinuous in probability at θ0”, i.e. for every ǫ > 0

lim
δ → 0

lim sup
n → ∞

P ( sup
θ ∈ Bδ(θ0)

‖ Ġn(θ)− Ġn(θ0) ‖≥ ǫ) = 0;

(b) with probability 1, there exists a random number N0 such that Ġn(θ0)
is nonsingular ∀n ≥ N0 and there exists a nonrandom number λ > 0 with
λ < 1

2 infn≥N0
‖ Ġn(θ0)

−1 ‖−1.

Theorem 4 Under Assumptions 1 and 2, there exists a sequence (θ̂n)n of ran-
dom variables such that
(i) P (Gn(θ̂n) = 0) → 1 and

(ii) θ̂n →P θ0.

Proof: With probability 1, for every n ≥ N0, the functions Gn are one-to-one
on U and we define θ̂n as the unique zero of the function Gn in U if it exists
and as an arbitrary constant otherwise. Let η > 0 be arbitrary. By Assumption
2.(a) there exist some nonrandom numbers δ, n0 such that ∀n ≥ n0

P (‖ Ġn(θ)− Ġn(θ0) ‖< λ, ∀θ ∈ Bδ(θ0)) ≥ 1− η

2

By a modified version of the inverse function theorem (p. 221 of [9]; see also
Lemma 1 of [15]), the event {‖ Ġn(θ)− Ġn(θ0) ‖< λ,∀θ ∈ Bδ(θ0)} is contained

14



in the event {Bλδ(Gn(θ0)) ⊆ Gn(Bδ(θ0))}. By Assumption 1, there exists a
nonrandom number n1(> n0) such that P (0 ∈ Bλδ(Gn(θ0))) ≥ 1−η/2, ∀n ≥ n1.
Hence

P (0 ∈ Gn(Bδ(θ0))) ≥ P (0 ∈ Bλδ(Gn(θ0)) ⊆ Gn(Bδ(θ0))) ≥
P (0 ∈ Bλδ(Gn(θ0))) + P (Bλδ(Gn(θ0)) ⊆ Gn(Bδ(θ0)))− 1 ≥ 1− η

for every n ≥ n1, i.e. P (0 ∈ Gn(Bδ(θ0))) → 1.

Finally, we prove that θ̂n →P θ0. Suppose that there exist η0, δ0 > 0 and
a subsequence (nk)k such that P (θ̂nk

∈ Bδ0(θ0)) < 1 − η0, ∀k. Using the same
argument as above we get a contradiction. 2

In order to obtain the existence of a strongly consistent estimator θ̂n such
that with probability 1, Gn(θ̂n) = 0 for all n large, we need to strenghten our
assumptions as follows.

Assumption 1’. Gn(θ0) → 0 a.s.

Assumption 2’. The same as Assumption 2, except that (a) is replaced by:
(a’) (Ġn(θ))n≥1 is “equicontinuous on U at θ0 a.s.”, i.e. with probability 1, for
every ǫ > 0 there exists a random number δ > 0 such that Bδ(θ0) ⊆ U and

‖ Ġn(θ)− Ġn(θ0) ‖< ǫ, ∀θ ∈ Bδ(θ0), ∀n ≥ 1;

Theorem 5 Under Assumptions 1’ and 2’, there exists a sequence (θ̂n)n of
random variables and a random number n0 such that
(i) P (Gn(θ̂n) = 0 for all n ≥ n0) = 1 and

(ii) θ̂n → θ0 a.s.

Proof: By Assumption 2’.(a’), with probability 1, there exists a random num-
ber δ > 0 such that ‖ Ġn(θ) − Ġn(θ0) ‖< λ, ∀θ ∈ Bδ(θ0), ∀n ≥ 1. By As-
sumption 1’, with probability 1, there exists a random number n0 such that
0 ∈ Bλδ(Gn(θ0)), ∀n ≥ n0. Using the same argument as in the proof of Theo-
rem 4 we can conclude that P (0 ∈ Gn(Bδ(θ0), ∀n ≥ n0) = 1. The proof that

θ̂n → θ0 a.s. is again by contradiction. 2

The next result will give us a tool for verifying Assumption 2.(a) in practice.

Theorem 6 Let (Xn(θ))θ ∈ Θ , n ≥ 1 be multiparameter processes with values in
Rk and continuous sample paths. If there exist γ, C, α > 0 such that

E[‖ Xn(θ2)−Xn(θ1) ‖γ ] ≤ C ‖ θ2 − θ1 ‖p + α

∀n ≥ 1, ∀θ1, θ2 ∈ Θ, then for every ǫ > 0

lim
δ → 0

lim sup
n → ∞

P ( sup
‖θ2−θ1‖<δ

‖ Xn(θ2)−Xn(θ1) ‖≥ ǫ) = 0.

Proof: See problems 2.2.9, 2.4.11 and 2.4.13 of [5]. 2
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B Some matr ix r esults

The first lemma is a matrix analogue of the following result: if (bn)n is a sequence
of positive real numbers and an ≥ ∑n

i= 1 bi, then
∑

n(bn/a
2
n) < ∞. Our proof is

an extension to the multi-dimensional case of the argument kindly provided to
us by Peter Daffer for the one-dimensional case.

Lemma 4 Let (Bi)i≥1 be a sequence of nonnegative definite matrices such that
An ≥ ∑n

i= 1 Bi, ∀n ≥ N , where (An)n are positive definite matrices. Then

∑

n≥N

tr(A−1
n BnA

−1
n ) < ∞.

Proof: Let Cn := An −∑n
i= 1 Bi, n ≥ N . Then An =

∑n
i = 1 Di, ∀n ≥ N , where

Di := Bi + (1/n)Cn is a nonnegative definite matrix. Since tr(A−1
n BnA

−1
n ) ≤

tr(A−1
n DnA

−1
n ) it is enough to prove that

∑

n≥N

tr(A−1
n DnA

−1
n ) < ∞.

We have A−1
n DnA

−1
n = −(A−1

n−1 − A−1
n ) + A−1

n−1(I − An−1A
−1
n )(I + An−1A

−1
n )

and

tr{A−1
n−1(I −An−1A

−1
n )(I +An−1A

−1
n )} ≤ tr{A−1

n−1(I −An−1A
−1
n )(I + I)}

= 2tr(A−1
n−1 −A−1

n )

(To see this, write A−1
n = (An−1+Dn)

−1 = A−1
n−1−A−1

n−1(A
−1
n−1+D−1

n )−1A−1
n−1;

hence I−An−1A
−1
n = (A−1

n−1+D−1
n )−1A−1

n−1 and tr{A−1
n−1(I−An−1A

−1
n )2} ≥ 0.)

Hence, for every n ≥ N + 1

tr(A−1
n DnA

−1
n ) ≤ −tr(A−1

n−1 −A−1
n ) + 2tr(A−1

n−1 −A−1
n ) = tr(A−1

n−1 −A−1
n )

n
∑

i = N

tr(A−1
i DiA

−1
i ) ≤ tr(A−1

N DNA−1
N ) +

n
∑

i= N + 1

tr(A−1
i−1 −A−1

i )

≤ tr(A−1
N DNA−1

N ) + tr(A−1
N )

which concludes the proof. 2
The next result gives a matrix analogue for the inequality λm in (G)

∑d
t= 1 z

2
t ≤

∑d
t,l = 1 gtlztzl ≤ λm ax(G)

∑d
t= 1 z

2
t , which is valid for any symmetric matrix G

and for every z1, . . . , zd ∈ R (see Theorem 3.15 of [11], or p. 62 of [8]).

Lemma 5 If F = (ftl)t,l = 1,...,d is an arbitrary matrix and x1, . . . , xd ∈ Rp,

then 1
2
λm in (F̃ )

∑d
t= 1 xtx

′
t ≤ ∑d

t,l = 1 ftlxtx
′
l ≤ 1

2
λm ax(F̃ )

∑d
t= 1 xtx

′
t where F̃ is

the matrix with entries f̃tl := ftl + flt.
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Proof: We have y′(2
∑d

t,l = 1 ftlxtx
′
l)y = y′(

∑

t,l ftlxtx
′
l +

∑

t,l fltxlx
′
t)y =

∑

t,l f̃tl(x
′
ty)(x

′
ly) ≤ λm ax(F̃ )

∑d
t= 1(x

′
ty)

2 = λm ax(F̃ ) · y′(
∑d

t= 1 xtx
′
t)y, for every

y ∈ Rp. The other inequality is similar. 2

Lemma 6 If A = (atl)t,l = 1,...,d is a matrix with |atl| ≤ ǫ, ∀t, ∀l then
|λ| ≤ dǫ for any eigenvalue λ of A.

Proof: Let λ be an eigenvalue of A and x an eigenvector corresponding to it,
with ‖ x ‖= 1. Then |λ| = |λ| ‖ x ‖=‖ Ax ‖≤‖ A ‖≤‖ A ‖E≤ dǫ. 2
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