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Abstract

We consider the marginal models of Liang and Zeger [7] for the analysis
of longitudinal data and we develop a nonparametric theory of statistical
inference for such models. We prove the existence and consistency (weak
and strong) of the maximum quasi-likelihood estimator using some gen-
eral results for estimating equations. We also establish the asymptotic
normality of this estimator.
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1 Introduction

Longitudinal data sets arise in biostatistics and life-time testing problems when
the responses of the individuals are recorded repeatedly over a period of time.
By controlling for individual differences, longitudinal studies are well-suited to
measure change over time. On the other hand, they require the use of special
statistical techniques because the responses on the same individual tend to be
strongly correlated. In the seminal paper [7], Liang and Zeger proposed the
use of generalized linear models (GLM) for the analysis of longitudinal data
and introduced the marginal models for which the regression of each marginal
response on the explanatory variables is modelled separately from the within-
individual correlation.

In a cross-sectional study, a GLM is used when there are reasons to believe
that each response y; depends on an observable vector x; of covariates. Typically
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this dependence is specified by an unknown parameter 8 and a link function p
via the relationship p;(8) = p(z;8), where p;(8o) is the mean of y;. For one-
dimensional observations, the maximum quasi-likelihood estimator ﬁn is defined
as the solution of the equation

5 80— gt = o m

where fi; is the derivative of p and v;(8) is the variance of y;. Note that this
equation simplifies considerably if we assume that v;(8) = ¢;p(z;3), with a
nuisance scale parameter ¢;. In fact (1) is a genuine likelihood equation if
the y;’s are independent with densities c(y;, ¢;) exp{®; ' [(«}8)y; — b(z}3)]}; the
asymptotic properties of the maximum likelihood estimator (MLE) have been
thouroghly investigated in [2] and [12].

In a longitudinal study, each observation y; is actually d-dimensional and its
components (y;1,...,Yiq) represent repeated measurements at different times
for subject i. The approach proposed by Liang and Zeger is to impose the usual
assumptions of a GLM for each marginal scalar observation y;; (considering the
regression on a p-dimensional design vector z;;) and to model separately the
correlation within-individual. If these correlation matrices are known (but the
entire likelihood is not specified), then the d-dimensional version of (1) becomes
a generalized estimating equation (GEE).

In this article we prove the existence, consistency and asymptotic normality
of a sequence of estimators, defined as solutions (roots) of GEEs. We work
within the nonparametric set-up of Liang and Zeger, which makes our results
stronger than those of [2], [12] even for GLM (d = 1). Throughout this article,
we consider that the residuals form a martingale difference sequence, which is a
generalization of the independence assumption used in [2], [7], [10], [15].

Since the GEE is not the derivative of an equation, most of the technical
difficulties surface when proving the asymptotic existence of roots (REEs) of
such general estimating equations. General results available in the literature
for the existence of REEs involve conditions which are difficult to verify (e.g.
Theorem 12.1 of [4]). In this article we use a refinement of Theorem 1 of
[15], which also appears in [10] in a slightly different formulation. To apply it,
we introduced conditions (E-p) (respectively (E-a.s)), which require the weak
(respectively strong) equicontinuity of the derivatives of the GEE functions with
respect to the multidimensional parameter. For GLM, these conditions are
satisfied if the link functions are equicontinuous and a boundedness condition
(B) (on the extreme eigenvalues of the design matrix) holds. We note that our
condition (B) is weaker than the corresponding condition (S5) considered in [2].

In order to verify (E-p) for GEE, we employ a technique borrowed from the
proof of tightness of multiparameter processes with continuous sample paths,
and we impose some conditions on the rate of growth of some scalar functions
associated with the link functions. These conditions are satisfied in the unidi-



mensional case (i.e. p = 1) and in the case of the longitudinal linear model.
In order to verify (E-a.s), we impose the rather strong assumption that the
recorded observations are bounded, which is satisfied for categorical observa-
tions with a finite number of values. This assumption is not needed for the
longitudinal linear model.

In order to obtain the asymptotic normality in our more general context, we
assume that the residuals are bounded in L?*9. This condition does not appear
in [2], [12] for GLM. Finally, our Lemma 2 leads to a direct proof of the strong
consistency of the least square estimator (LSE); see [6].

The paper is organized as follows: in Section 2 we introduce the framework
and the assumptions and we state the main results. In Section 3 we give the
formal proofs of these results, while in Section 4 we examine the conditions
which will lead to the verification of the assumptions. Appendix A includes
some general results for estimating equations and in Appendix B we give some
auxiliary matrix analysis results which we found useful.

2 Statements of the results

If Ais a pxp matrix, we will denote with || A || its spectral norm, with || A || its
Euclidean norm and with tr(A) its trace. If A is a symmetric matrix, we denote
with Apin(A), Amax(A) its minimum, maximum eigenvalues. For a p-dimensional
vector z, we will use the Euclidean norm || z ||:= (2/x)/? = tr(za’)'/2.

For any matrix A, || A ||= {Amax(A’A)}/? and || A ||gp= {tr(A’A)}/2. In
particular, if A is symmetric and nonnegative definite, then || A ||= Amax(A).

Throughout the sequel, we will use the notation A < B if B — A is nonneg-
ative definite; in this case, tr(A) < tr(B). Moreover, if A is symmetric and B is
symmetric and nonnegative definite such that —B < A < B, then || A |<|| B |

We let AY/2L (A'Y/2E) be the left (respectively right) square root of the
positive definite matrix A, i.e. AY2LAY2E = A and AY/2E = (AV/2E) . We set
AV/2L = (AV/2L)=1 and A-V/2R = (A1/2R)-1,

Let y; := (yi1,---,¥%ia);¢4 = 1,...,n be a longitudinal data set consisting of
n respondents, where the components of y; represent measurements at different
times from subject i. In the marginal model that we consider the correlation
matrix of y; is denoted by R; and the marginal expectations and variances are
specified in terms of the regresion parameter § through

wit(B) == Eg(yir) = p(xi,8), Varg(yit) = ¢ifu(xy, ()

where x;; are p x 1 vectors of covariates and ¢; > 0 are dispersion parameters.
The link function p is assumed to be continuously differentiable with g > 0.



Examples:
1. in the logistic regression for binary data, p(y) = exp(y)/[1 + exp(y)];
2. in the log regression for count data, u(y) = exp(y);
3. in the linear regression for continuous data, u(y) = y.

Let pi(8) = Ep(yi), Vi(B) := Varg(y;) and €(B) = yi — pi(B)). 1If the
matrices R; are known, then the maximum quasi-likelihood estimator 3, is the
solution of the equation (see [13], p.315)

Zm(m’vi(ﬂ)—lei(m =0. (2)

Note that fi;(3) = D;(8)X; and V;(8) = ¢;Di(8)"/>R; D;(8)"/?, where D;(3) is
a d x d diagonal matrix whose (t,t) element is p(z},) and X; is a d x p matrix
whose ¢-th row is z},.

In the sequel the unknown parameter (3 lies in an open set B C RP and [ is
the true value of this parameter. Our work is under the following assumption:

Assumption (A)
(i) L:=max;—y,_ _ asup;>; || @i [|< o0
(i) ¢; = 1,Yi
(iii) R; = R, Vi, where R = (ry)i,1=1,....4 is a (known) symmetric positive
definite matrix
(iv) p is twice continuously differentiable

(v) inf; p(xl,B0) >0, VE=1,...,d

(vi) € = ¢€;(Bp),i > 1 is a (d-dimensional) martingale difference sequence, i.e.
E(€;|Fi—1) = 0,Vi > 1, where F; is the o-field generated by €1, ...

y €i

The quasi-likelihood equation (2) can be written as

= Z u;i() =0 (3)
i=1

where u;(8) = X/D;(8)Y2GD;(3)'¢;( Zilzl guxithin(B)eu(B), with

) =
G = R7' = (gu)ti=1...a and hiyy(B) = [p(z},B)/f(z},8)]*/?, which is well-
defined by (A). Note that w; := u;(8o),% > 1 is a (p-dimensional) martingale
difference sequence. The function s, (/) is called the quasi-score function.



We denote with Z,(3) the dxp matrix whose t-th row is 2, (8)’ := / (2}, 5) s,
ie. Z;(8) = D;(8)X;. Then the quasi-information matrix is

F,(B) := Var[s,(8)] = ZE[ul(ﬂ)uz(ﬁ)/] _ ZX{Di(ﬁ)lmGDi(ﬁ)lmXi

i=1 i=1
n n d

= > Zi(BGZi(B) =D > guzin(B)zu(B)
i=1 i=1t,l=1

Note that E[$,(8)] = —F,(8), since é,(8) = Hn(8) — F,(3) with

n

H,(p) = Z Z gurithin(B)ea(B).

i=1t,l=1

As it is the normal practice in this set-up, we will drop the argument Sy in

Di(B0), Zi(Bo), Fn(Bo), etc.
The asymptotic behaviour of the extreme eigenvalues of the matrix F), is closely
related to those of the matrices B, := Y. | Z!Z; = E?:l Zilzl zit7}, and

Ay =" XIX, =" S g, since
)\min(G) . Bn S Fn S )\max(G) : Bn (4)

(using Lemma 5, Appendix B) and

m-A, <B,<M-A, (5)
where m := ming—; __gqinf; f(a},5o), M := maxy— . qsup; f1(z},5). In par-
ticular, limy, Amin(Fp,) = oo if and only if lim, Apmin(A,) = oo; in this case

Amin (Fr) > 0 (i.e. F, is positive definite) for n > N.
We let Bs(B0) := {0;|| B — Bo ||< d} be neighbourhoods of Gy. We will use
the following conditions:

(D) Divergence: limy, oo Amin(Ay) = 00.
(E-p) FEquicontinuity in probability: for every € > 0

lim limsup P( sup || F, 1 (30(8) — 3n(50)) [|= €) = 0.
0=0 n—co  BeBs(Bo)

(E-a.s) Equicontinuity almost surely: there exists an open neighbourhood U of
Bo such that (F;1$,(3))n>nN is equicontinuous on U at 3y a.s.

(V) Convergence of the normed conditional variance: Q; Lt 0, where
Qi =V, Bl | Fi VPR T



(N) Continuity: for every € > 0

lim limsup P( sup || W,o(B)—1]>¢€) =0
020 n—oo  BeEBs(Bo)

where W, (8) := —F, /*F5,(8)Fy /R,

Remarks: (D) is a sufficient condition for the strong consistency of the
least squares estimator in the linear model (Theorem 1 of [6]). This condition
has also been considered for the strong consistency of the MLE in a GLM with
regressors with a compact range (Corollary 1 of [2]; Theorem 3 of [12]).

Conditions (E-p) (respectively (E-a.s)) are new in this framework. These
conditions allow us to use an inverse function argument (see the proof of The-
orem 4, Appendix A) to obtain the asymptotic (respectively almost sure) exis-
tence and the weak (respectively strong) consistency of a solution of equation
(3). Unlike [2] and [12], we can not use convexity arguments to obtain this
solution since we do not assume that s, () is a gradient.

Condition (V) allows us to prove the asymptotic normality of the quasi-score
function using a martingale central limit theorem. This condition is automati-
cally satisfied in the case of independent observations.

Condition (N) is an extension to longitudinal data of a similar condition
that has been introduced for the asymptotic normality of the MLE in a GLM
(Theorem 3 of [2]; Theorem 1 of [12]).

We state now our asymptotic results.

Theorem 1 Under (D) and (E-p), there exists a sequence (B,)n of random
variables such that

(i) P(sn(Bn) = 0) — 1 and

Theorem 2 Under (D) and (E-a.s), there exists a sequence (B,)n of random
variables and a random number ng such that

(i) P(sn(08,) =0 for all n > ng) =1 and

(i4) Bn — Bo a.s.

Lemma 1 Suppose that sup;s, E[ || ¢ [|**° | F;_1] < 0o for some § > 0. Under

(D) and (V), we have:
F7l2ls, —4 N(0,1). (6)

Theorem 3 Suppose that sup;>; E[ || € [|*T |Fi—1] < oo for some § > 0.
Under (D), (V) and (N), we have

FY2R(3, — By) —a N(0,1)

for any sequence (Bn)n with P(sn(ﬂAn) =0)— 1 and ﬂAn —p Bo.



3 Proofs

We will need the following version of the (multivariate) martingale strong law
of large numbers.

Lemma 2 Let (s,),>1 be a (p-dimensional) zero-mean, square-intergrable mar-
tingale and (A,)n>1 be a sequence of nonnegative definite p x p matrices with
A, < Ay and limg, Apin (Ay) = co. If there exists a constant ¢ > 0 such that

Var(s,) < cA,, foralln> N
then A;'s, — 0 a.s.

Proof: We will consider only the case ¢ = 1. The general case can be reduced
to the case ¢ = 1 for the matrices B,, := cA,,.

Let wp := 8p, — Sn—1 (8o = 0). By Theorem 12.4 of [4], it is enough to prove
that >, < n E[ll 4, un ||?] < oo. This follows from Lemma 4 (Appendix B)
since E[|| A, u, ||?] = tr{A, ' Elu,u,]A,; '} and Var(s,) = Y| Eluu}]. O

Remark: The previous lemma leads to a direct proof for the strong consis-
tency of the LSE ﬁn in the classical linear model y; = x/8 + €;,4 > 1, when
the residuals (¢;);>1 form an L?bounded martingale difference sequence: if
Amin (X0, i2}) — 00, then G, — By = (37—, wixh) " (X, wi€e;) — 0 a.s. since
Var(Y!, mie;) < C Y0 x;x}, where C := sup; E[e?].

Proofs of Theorems 1, 2: These results will follow by Theorem 4, respec-
tively Theorem 5 (Appendix A) once we verify Assumptions 1, 2, respectively
Assumptions 17, 2’, for the functions

Gn(B) == F;'s,(8), n>N.

Under (D), Gn(Bo) = F; s, — 0 a.s. (by Lemma 2), i.e. Assumption 17 is
verified; consequently Assumption 1 is verified. Note that G,, are continuously
differentiable on B. Since G, () = F;7'5,(f), Assumption 2.(a) is exactly (E-p)
and Assumption 2’.(a’) is exactly (E-a.s).

For Assumption 2.(b) we note that G,(3y) = F;'H, — I, where I is the
identity matrix. We will prove that

F7'H, —0as (7)

It will follow that with probability 1, there exists a random number No(> N)
such that || F,, ' H,, ||< 1/2 for all n > Ny. Hence, with probability 1, for every
n > Ny, G, (Bp) is invertible with

1

Gn(Bo) I ————— < 2.
| Grn(Bo)™" I TR



Assumption 2.(b) is verified with A = 1/4.

In order to prove (7), we let H,, ; be the j-th column of H,,. Note that H,, ; =
St vij, where v;; = Eil:l gtlIithitl,j(BO)ﬁilai > 1 is a (p-dimensional)
martingale difference sequence; here hitl,j (Bp) denotes the derivative of hy
with respect to 3; at [y, which is well-defined by (A). Note that h;y(5) =

hi) (B)x), — h) (B)aly with

1) _ fi(}, 3) (2) _ M(milﬁ),u(x;tﬁ)lﬂ
h/Ltl (ﬂ) - 2H(I;t6)1/2ﬂ(ﬁc;lﬂ)l/2 ) hitl (ﬂ) - 2#(I;lﬂ)3/2 . (8)

Hence, there exists a constant C' such that |hitl,j (Bo)| < C,Vi. Using Lemma 5
(Appendix B), we have

d d
Elv; jv; ;] = Z Gityt2 ity Tigy < Amax(Qi) - ZfCitffét
=1

t1,ta=1

where Q); is the matrix with entries g;z,+, := le,lz G111 9otz Pity1n 5 (B0) itats. (Bo)
cov(Yit, , Yit, ). Note that |gis,+,| < C; for a constant Cy; hence Apax(Q;) < dCh,
by Lemma 6 (Appendix B).

Using (4) and (5), Var[Hy ;] = Y1y Ev; ju] ;] < dCi-Ay < dCy-[mAmin(G)] ™
F,. Hence F;'H, ; — 0 a.s., using again Lemma 2. O

Proof of Lemma 1: Note that (6) is equivalent to: Yy € R?

Y'sn
VY Fny
This follows by the Cramer-Wold theorem and the invariance property un-
der orthogonal transformations of a sequence of asymptotically normal ran-
dom vectors (see (3.4) of [2]): we have (y'sn)/Vy Fny = y’PT’IFn_l/%sn, where
Py = (Fi/QRy)/\/y’Fny is an orthogonal transformation.
In order to prove (9) we will use the martingale central limit theorem with
conditional Liapunov condition (Corollary 3.1 of [3]). Therefore, we have to
verify the following two conditions:

! Y l |2F8 | T,
W;E[ |y u;|* 0| Fi_1] — 0. (10)
1 n
y'Foy > El(yui)?|Fica] —p 1 (11)
ng =1

We have u; = Z{GDi_l/Qei and

STE[ w1 Fioa) < YN Zig 1240 | 6DV P B || 6 240 | Fioa)
i=1 i=1



n
< Ci- Z | Ziy |>T° (for a constant C;)
i=1

since GD; is a matrix whose entries are bounded in modulus. On the other
hand, y'F,y = Y1 (Ziy)'G(Ziy) > Amin(G) D_i—1 || Ziy ||, using Lemma 5
(Appendix B) with p = 1. Hence, condition (10) is verified:

D > 2 s
P QN2 (i, [ Ziy 272

IR S 245
(y' Fpy)t+o/2 ZE[ y'ui| * 0| Fica] < Cy-
n i=1

§ =6/2 _,
<03 ZHZyH /

where Cy is a constant with || Z;y ||[< Cs,Vi and we have used the fact that

i1 | Ziy I1P= 4By = Auin(By) || y [I°— oo, by (D).
To verify (11), we note that y'F,y = E[(y'sn)?] = > i, E[(y'u;)?] and

Y Bl w)’|Fia] =y Fay = >y {Bluiw| Fi 1] — Eluujl}y = Y wiQuw;
=1 1=1 1=1

with w; := V1/2R 1/2GZ1-y and @; as defined in (V). We have

n n n
G E wiw; < g wiQiw; < by, g wiw;
im1 i=1 i=1

where a,, := min;<, Amin(Q;) and by, := max;<, Amax(Q:). Hence | >0 wiQ;w;|
< e Yot wiw; = ey Fuy, where ¢, := max{|a,|, |by|}. The proof is complete
since ¢, —p 0, by (V). O

We need the following result for the proof of Theorem 3.

Lemma 3 Let (A,), be a sequence of pxp random matrices and Y, p-dimensional
random vectors such that X, := A,Y,,n > 1 are square integrable in norm. If
Ay, —p I and C :=sup,, E[ || Xn ||?] < 0o, then Y,, = X,, + op(1).

Proof: Let B,, :==I—A,. Let dy € (0,1) be arbitrary (to be chosen later). For
any 1 € (0, 1) there exists ng such that P(]| Bn < do) > 1 —n,¥Yn > ng. On

the event {|| B, ||< do}, A, is nonsingular, A1 =2 k>0bBn
- | Bn | do
IAZ =T < X 1 Ball* = < =d
2 B0 = T-d

and | Y, — X || AZT =T |- ]| X < d ] X |



By Chebyshev’s inequality, P(|| X,, [|[< M) >1— (C/M?),¥yM > 0. Hence

P Yo = X [|< dM) P(l Bn < do , || Xn [I< M)

P(|| By [|< do) + P(|| X [[< M) =1

(A\VARAY

Y%

1—77—W, V’HZTLQ

Finally, let M; > 0 and € € (0, 1) be arbitrary. Pick M > 0 with M2 > C/e. The
conclusion follows from the above inequality with n := ¢ — (C/M?),d := My /M
and dyp :=d/(1+d). O

Proof of Theorem 3: We focus on the event {s,(8,) = 0} whose probability
goes to 1. By the mean-value theorem for vector-valued functions

= [ / (o + t(Bn — ) dt] (B — )
" L2, { / W (fo + (8 ﬂo))dt} Fy/2R(B, — Bo)

with W, as defined in (N). We claim that

1
/0 Wo(Bo + (B — o)) dt —p (12)

To see this, let € > 0,7 > 0 be arbitrary. By (N), there exist ¢ and n; such that
P(|Wo(B) —I||<e¢, VB € Bs(By)) >1—n/2,¥n > ny. Since 5, —p Bo, there
exists an integer ny such that P(8, € Bs(fo)) > 1 —n/2,¥n > ny. We have

1 ~
P / Wo(Bo + (B — o)) dt — T || <€) >

P(|| Wa(B) — I ||< €,Y8 € Bs(Bo) and B, € B;(6o)) >
P(| Wa(B) — I ||< €,¥8 € Bs(Bo)) + P(Bn(f0) € B5(Bo)) —1>1—n

Note that E[|| F, /**s, |[2] = tr{F, V**E[s,s.|Fy /*RY = tr(I) = p, Vn.
From Lemma 3, Fﬁ/2R(Bn - Bo) = B, op(1). The result follows from
Lemma 1, using Slutsky’s theorem. O

4 Verification of the assumptions
In this section we will examine some conditions which lead to the verification of

condition (E-p), (E-a.s.) and (N) introduced in Section 2. We will suppose that
there exists K > L || By || such that inf,ci_x g7 f1(y) > 0, with L as defined in

10



Assumption (A). If we choose r < (K/L)— || fBo || such that U := B,(5y) C B,
then |z, 8| < L(r+ || 6o ||) < K, VB e U, ie. ;€ [-K,K], VB e U.

We begin by noting that if the eigenvalue ratio Apax(An)/Amin (Ay) is bounded,
then (N) is equivalent to (E-p): to see this, note that F;'H, — 0 a.s. and

F AR W (B) = DE?R = —F7 Hy + BT (30(60) = $a(8)).
Now we examine conditions (E-p), (E-a.s.). For this purpose, we write
5n(8) = HD(B) = Hi? () — Fu(B)

where Hi(8) = Y1y 00y guhiy) (Bea(B)zah,, HiP () = i, Y1 gu
hgfl) (B)eu(B)zux}, and hz(-zl),hz(-fl) are given by (8). We will use the following
notations: A (81, 8,) == ) (Ba)en(B2) — 3 (Br)ea(Br) for s = 1,2 and

AP (B, ) == b (Bs) — B (B1), where hE)(8) = /ilal,B) /i@, B). We
let @, :={1,...,n} x{1,...,d}.

We consider the following condition:
(B) lim sup,, . o [Amax (4n)]"/2 /Amin (45) < 00

Under (D), this condition is weaker than condition (S5) of [2] (or condition (D3)
of [12]), in which a power 1/2 + § of Apax(Ay) is considered.

Proposition 1 Suppose that AC, as > 0;5 = 0,1, 2,3 such that
|at(B2) — pa(B1)| < Co || B2 = Bu || 2+ (13)

I3} (B2) = hii) (BU)] < O || B = By || BT (14)
Vi, VB, 82 € U. Then (B) implies (E-p).

Proof: The result will follow by Theorem 6 (Appendix A) once we prove that
3C,a > 0 such that Vn > 1,V(3,0, € U

E[ || Fy ' ($a(B2) = 32(81)) B]) < C || B2 = B P72
Using (B), it is enough to show that 3C%, o/, > 0 such that Vn > 1,V(, 32 € U
B[ H(B2) = HO(B1) 3] < CL |l Ba = By IIPF5 - || Ay | (15)

for s = 1,2 (and a similar inequality for F,,, without the EJ - ]).
Using the fact that E[ || A ||%] = tr[E(A4’A)], we have

1
E[| HV(8s) — HV(B1) ||12] = tr{ > S it Tir Tty )
(i1,t1),(i2,t2)EPy,

11



(1) .f (1) (1) 1
where S(i1¢1),(i27t2) T (xgltlzht?) le;b Gtal1 Jtalo [A11t1l1A12t2l2] and Az1751l1 .
A

irir1, (B1, B2). After tedious computations we reach the conclusion that

E[A(l) A(l) | = { Oiytyly Ointal if iy # io

irtil Tistals 6it1l15it2l2 + wit1l1t2l2 1f il = i? = l

where 8, = @tl(m) $inn(1) with Gin(8) := h})(8)(wa(B) — pa(Bo)), and
Witsytaty = i)y, (B2) — By (B[RS, (B2) — B, (B1)eov(yar,, ya,). Hence

B HDB) —HOG) B =tr { Y (st Tints Tty |

(i1,t1),(i2,t2) €EPr

+ Z 6 D Vitsea ity T, } (16)

ti,t2

where V(i1 ,t1),(i2,t2) *— (xiltlzléh) Eh,h gt1119t2125i1t1115i2t212 and Vitity =
, .
(zitlxih) Ell,lg Gt111 Gtala Wity 1y tols - By Lemma 5 (Appendlx B)

1 -
Z r(ilytl)y(i21t2)xi1t1x;th < EAmax(Rn) A
(i1,01),(i2,l2)€Qn

§ U'Ltltgzltlxzt2 ~ 2 max 1 § xztxlt

t1,t2

where R, is the matrix with entries T(iv,t1),(izst2) = T(i1,81),(i2,t2) T T(in,t2),(i1,61)
with (i1,11), (i2,t2) € ®,, and V; is the matrix with entries v, ¢, .

From conditions (13) and (14) and Assumption (A), it follows that there
exists Cy, o > 0 such that |7, ¢,),(ia,02)| < 2C4 || B2 — B1 [[PT*4; using Lemma
6 (Appendix B), it follows that Amax(Rp) < 2dCy || B2 — B1 ||PT* . Therefore

tr { Z Tin 1), (inta) Tinta Tigty } < dCy || B2 — 1 [PF4 tr(A,)  (17)
(ilvtl))(i2;t2)€¢n
The similar argument applied to the matrix V; leads us to
tr {Z Vit 15T ity Ty } < dCs || Bo = Br [[PF0 tr{z Ty, } (18)
t1,t2

Inequality (15) follows from (16), (17) and (18), since tr(4,) <p || An |-

A similar argument can be used for P (

B HPB) = HPBo) 3] = trl D 5 oy Tirh oty

(i1,01),(i2,l2) €Dy,

respectively for F,,) by writing

(2) — / ) (2) (2)
where Slinyl1),(inyl2) " Etl,tQ (xiltlxzztz)ghllgtzlz [AzltlllAlthIQ] o
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Proposition 2 Suppose that

sup || yi [[< oo as. (19)

Then (B) implies (E-a.s).

Proof: From the uniform continuity of the functions pu, /i, ji on the interval
[— K, K] and the boundedness of the regressors z;;, we obtain that (u(z},3))i>1,
(i(xf0))i>1, (ji(25,0))i>1 and hence (hgtgl)(ﬁ))izl are equicontinuous on U at
Bo. Moreover, since (€;);>1 are bounded in norm a.s. (by (19)), it follows
that (hgfl)(ﬁ)eil(ﬁ))i;s = 1,2 are equicontinuous on U at §y a.s. Hence, with
probability 1, for every e > 0 there exists a random number ¢ € (0,r) such that
1A%) (8, 80)| < €,V8 € Bs(Bo), Vi, Vt,VI,Vs = 1,2,3.
Using (B) it is enough to show that 3C; > 0 such that V3 € Bs(5y),Vn

I (8) = HY (Bo) 1< Cye || Ay |12

for s = 1,2 (and a similar inequality for Fy,).
Using the fact that || A ||=|| A’A ||*/?, we have

1
H HT(Ll)(ﬂ) B HT(Ll)(BO) || - || Z SEil),tl),(i%tQ)ziltlx;2t2 Hl/2
(ilvtl))(i2;t2)€¢'n

1 1 1 1
where SEil),tl),(imtz) = (‘rgltlxiQtQ)le,ZQ gtlllgt2l2A’§121l1A’§222l2 and AE12111 =
Agizlll(ﬁ,ﬂo). By Lemma 5 (Appendix B)

1. . . 1 )
S Amin(Sn) - An < > sgil))h%(i%h)xiltlx;m < EAmaX(Sn) A,

2 . .
(i1,t1),(22,t2) €@y

& o . 1 1
where S, is the matrix with entries §;, 1)), (is,t.) = SEil),tl),(i2,t2) + sgiitz)y(ihtl)

with (il,tl), (ig,tg) € ®,,. Note that |5~(i1,t1),(i2,t2)| < 2d2L2(maxt7l |gtl|)2€2 =
2C7€?; using Lemma 6 (Appendix B), it follows that [Amax(Sn)| < 2dC2€? and
[Amin(Sn)| < 2dC%€%. Hence for every 3 € Bs(p) and for every n

I ED(B) = HP (Bo) || < VdCie || Ay ||V/*
A similar argument can be used for HT(LQ) (respectively for F,) by writing

2
| H2(B) = H®(Bo) || = |l S SEil),ll),(iQ,lg)zilllx/i2l2 e
(ilvll))(i%b)e@n

(2) — I 2 2)
where ;0 1) = Doty (Tt Tiatn ) Ia 1 Gtala D 41, Doy -

We conclude this section by discussing some examples.
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Ezample 1. For p = 1, condition (13) of Proposition 1 is automatically satis-
fied, while condition (14) is satisfied if y is three times continuously differentiable

on [— K, K]. This follows by the mean-value theorem, since the functions hz(.fl)

are continuously differentiable with |h£fl)(ﬂ)| < C,Vi,Vp € U. Moreover, in this
case, (B) is equivalent to liminf, Y th:1 x?, > 0, which is an immediate
consequence of (D).

Ezample 2. In the case of the linear regression, we have p(y) = y; hence
hgtsl) =0for s =1,2 and $,(8) = —F,(3). In this case it can be checked directly
that (B) implies (E-p) and (E-a.s). Conditions (13) and (14) of Proposition 1,
respectively condition (19) of Proposition 2 are no longer needed.

A General result for estimating equations

Let G, (0) := Gy (w,0),n > 1 be p-variate random functions of § € ©, where ©
is an open subset of RP which contains the true parameter 6.

Assumption 1. G (6p) —p 0.

Assumption 2. There exists an open neighbourhood U of 6y such that with
probability 1, G, (0) is continuously differentiable on U, Vn > 1. Moreover,
(a) (Gn(8))n>1 is “equicontinuous in probability at 6,7, i.e. for every € > 0

lim limsup P( sup || Gn(0) — Gn(60) ||> €) = 0;
020 n—oo  9eB;(bo)

(b) with probability 1, there exists a random number Ny such that G, (6)
is nonsingular Vn > Ny and there exists a nonrandom number A > 0 with
A< %infnZNO || Gn(go)_l ||_1.

Theorem 4 Under Assumptions 1 and 2, there exists a sequence (én)n of ran-
dom variables such that

(i) P(Gn(0,) =0) — 1 and

(ZZ) 9n —p 90.

Proof: With probability 1, for every n > Ny, the functions G, are one-to-one
on U and we define 6,, as the unique zero of the function G, in U if it exists

and as an arbitrary constant otherwise. Let n > 0 be arbitrary. By Assumption
2.(a) there exist some nonrandom numbers ¢, ng such that ¥n > ng

P(|| Ga(6) = Gal60) || < X, Y8 € By(60)) > 1 — 1

By a modified version of the inverse function theorem (p. 221 of [9]; see also
Lemma 1 of [15]), the event {|| G,,(0) — G»(6p) ||< A, V0 € Bs(y)} is contained
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in the event {Bxs(Gn(6p)) C G,(Bs(6p))}. By Assumption 1, there exists a
nonrandom number nq (> ng) such that P(0 € Bxs(Gn(6o))) > 1—-1/2,¥n > ny.
Hence

P(0 € Gn(Bs(6p))) > P(0 € Bxs(Gr(bo)) € Gn(Bs(00))) >
P(0 € Bxs(Gn(bh))) + P(Bxs(Gn(0o)) € Gn(Bs(0)) —1>1—1n

for every n > nq, i.e. P(0 € Gp(Bs(0p))) — 1.
Finally, we prove that ¢, —p 0p. Suppose that there exist ny,dp > 0 and

a subsequence (ng)y such that P(0,, € Bs,(0)) < 1 —no,Vk. Using the same
argument as above we get a contradiction. O

In order to obtain the existence of a strongly consistent estimator 6,, such
that with probability 1, G,,(6,) = 0 for all n large, we need to strenghten our
assumptions as follows.

Assumption 1°. G,(6y) — 0 a.s.

Assumption 2. The same as Assumption 2, except that (a) is replaced by:
(") (Gn(8))n>1 is “equicontinuous on U at Oy a.s.”, i.e. with probability 1, for
every € > 0 there exists a random number § > 0 such that Bs(6y) C U and

| Gn(0) — Gn(6o) || < €, VO € Bs(6y), ¥Yn > 1;

Theorem 5 Under Assumptions 1’ and 2’, there exists a sequence (én)n of
random variables and a random number ng such that

(i) P(Gn(0,) =0 for all n > ng) =1 and
(i) 6, — 0y a.s.

Proof: By Assumption 2’.(a’), with probability 1, there exists a random num-
ber & > 0 such that | G,(0) — G,(6o) ||< A\, V8 € Bs(6y),¥n > 1. By As-
sumption 1’, with probability 1, there exists a random number ng such that
0 € Bxs(Gn(09)),Vn > ng. Using the same argument as in the proof of Theo-
rem 4 we can conclude that P(0 € Gy, (Bs(6p),Vn > ng) = 1. The proof that
0,, — 6y a.s. is again by contradiction. O

The next result will give us a tool for verifying Assumption 2.(a) in practice.

Theorem 6 Let (X,,(0))gco,n > 1 be multiparameter processes with values in
RF and continuous sample paths. If there exist v,C,a > 0 such that

Bll| Xn(02) — Xn(01) ["] < C || 02 — 61 [P
Vn > 1,V01,05 € O, then for every e > 0
}im limsup P( sup || Xn(62) — Xpn(61) |> €) = 0.

—0 n—oo [|02—061]|<5

Proof: See problems 2.2.9, 2.4.11 and 2.4.13 of [5]. O
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B Some matrix results

The first lemma is a matrix analogue of the following result: if (b,),, is a sequence
of positive real numbers and a,, > >"* , b;, then > (b, /a2) < oo. Our proof is
an extension to the multi-dimensional case of the argument kindly provided to
us by Peter Daffer for the one-dimensional case.

Lemma 4 Let (B;);>1 be a sequence of nonnegative definite matrices such that
A, > 3" B;,Yn> N, where (A,), are positive definite matrices. Then

> tr(A,'BaA, ) < oo

n>N
Proof: Let C,, := A, — > 1~ B;;n > N. Then A, =Y. | D;,¥n > N, where
D; := B; + (1/n)C,, is a nonnegative definite matrix. Since tr(A,;'B,A;') <
tr(A; 1D, A;') it is enough to prove that

> tr(4, ' DpALY) < 0.

n>N

We have A 1D, A" = —(AY, — A + AL (T — A 1 AD(T+ A, 1 ALY
and

tr{A L (I — Ayt AT+ A1 AN} <0 te{A 1 (T — A AH(I+ 1)}
= 2tr(At, - ALY

n

(To see this, write A;t = (A,_1+D,) P =AY —A L (A 4+ DY) A

hence I— A, 1 A; = (A1 +D; )7 A and tr{A 1 (T- A, 1A;1)?} >0.)
Hence, for every n > N + 1

tr(A D, ALY < —tr(AE — ALY - 2tr(AE — ALY =tr(ALE, - ALY

n n

S tr(ATTDATY) < tr(Ay'DNAG) + Y tr(Ah — A7)
=N i=N+1
< tr(Ay'DNARY) +tr(AyY)

which concludes the proof. O
The next result gives a matrix analogue for the inequality Amin (G) Ele 22 <

Etd 121 9112621 < Amax(G) thzl 22, which is valid for any symmetric matrix G
and for every z1,...,zq € R (see Theorem 3.15 of [11], or p. 62 of [8]).

Lemma 5 If F = (fu)ui=1,...4 s an arbitrary matric and x1,...,2q € RP,
- d d I d -
then Amin(F) Yj_y weay < > otim1 fumery < FAmax (F) Y op_q wpx; where F is

the matriz with entries thl = fu+ fi-
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Proof: We have y/(2 221:1 fuxex)y =y (O, fuzexy + 52, fumizy)y =

7 mn = d
Ztyl fu(21y)(@1y) < Amax(F) Zt:l(wéyy = Amax(F) -y (34— 2e2y)y, for every
y € RP. The other inequality is similar. O

Lemma 6 If A = (ay)ti=1,..4 s a matric with |ay| < ¢V, VIl then
[A| < de for any eigenvalue X of A.

Proof: Let A be an eigenvalue of A and z an eigenvector corresponding to it,
with ||  [[= 1. Then [A[ = Al | z [[=]] Az |<|| A |<[| A ||p< de. O
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