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Abstract

We study a long-range dependence Gaussian process which we call “sub-fractional Brownian motion”
(sub-fBm), because it is intermediate between Brownian motion (Bm) and fractional Brownian motion
(fBm) in the sense that it has properties analogous to those of fBm, but the increments on non-overlapping
intervals are more weakly correlated and their covariance decays polynomially at a higher rate. Sub-fBm
has a parameter h ∈ (0, 2), we show how it arises from occupation time fluctuations of branching particle
systems for h ≥ 1 and we exhibit the long memory effect of the initial condition.
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1. Introduction

Fractional Brownian motion (fBm) ξh = {ξh(t), t ≥ 0} is the best known and most widely
used (centered) Gaussian process with long-range dependence. Its covariance function is

Rh(s, t) =
1
2
(sh + th − |s− t|h), (1.1)

where h ∈ (0, 2), and the case h = 1 corresponds to Brownian motion (Bm). H = h/2 is called
Hurst parameter. fBm is the only Gaussian process which is self-similar and has stationary
increments. For basic information on fBm see Samorodnitsky and Taqqu (1994).

In this paper we study a (centered) Gaussian process ζh = {ζh(t), t ≥ 0} with covariance
function

Ch(s, t) = sh + th − 1
2
[(s+ t)h + |s− t|h], (1.2)
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where h ∈ (0, 2). The case h = 1 also corresponds to Brownian motion. For h 6= 1 this process
has some of the main properties of fBm, but its increments are not stationary (see however
Remark (b) on the Theorem in Section 2), they are more weakly correlated on non-overlapping
intervals, and their covariance decays polynomially at a higher rate as the distance between
the intervals tends to infinity. Hence ζh may be considered as being intermediate between Bm
and fBm, and for this reason we call it “sub-fractional Brownian motion” (sub-fBm). Our main
objective in this paper is to study the properties of sub-fBm and compare them to those of fBm.
As long-range dependence is an important feature of stochastic models in several areas (e.g.,
hydrology, turbulence, telecommunications, financial markets), we hope that the intermediate
properties of sub-fBm may make it useful in some applications.

We first found sub-fBm with h ≥ 1 in connection with occupation time fluctuations of a
branching particle system with Poisson initial condition, where the particle motion is a symmet-
ric α-stable Lévy process on Rd, α ∈ (0, 2] (α = 2 corresponds to Brownian motion). Similarly,
for h ≥ 1 fBm arises from occupation time fluctuations of a particle system without branching.
Special cases of these results (with h = 3/2) have been obtained by Deuschel and Wang (1994)
for Brownian motion without branching, and by Iscoe (1986) with branching in the context
of super-Brownian motion, but no mention is made in those papers on long-range dependence
processes. For our objectives in this paper it suffices to prove convergence of the covariances of
the occupation time fluctuation processes. From the perspective of the behavior of the particle
systems it is necessary to prove stronger results, namely, functional convergence of the occu-
pation time fluctuation processes. This requires different and more specialized tools, and it is
carried out in a separate paper (Bojdecki et al, 2004). The relevant point in this paper is the
fact that the temporal structures of the limit covariances are of types (1.1) or (1.2).

In Section 2 we study the properties of sub-fBm. In Section 3 we show how, for h ≥ 1,
fBm and sub-fBm arise from occupation time fluctuations of particle systems, and we stress the
long-range effect of the initial condition of the branching system.

2. Existence and properties of sub-fractional Brownian motion

Sub-fBm with h = 1 corresponds to Brownian motion, and the cases h = 0 and h = 2 are
irrelevant (however, for h = 2 the covariance (1.2) belongs to the null process, whereas in this
case fBm is of the form ξ(t) = tξ(1)). Hence we restrict h to the interval (0, 2).

Existence of sub-fBm ζh for any h ∈ (0, 2) can be shown in the following two ways: (1)
Consider the process

1√
2
(ξh(t) + ξh(−t)), t ≥ 0, (2.1)

where {ξh(t),−∞ < t <∞} is fBm on the whole real line. It is easy to see using (1.1) that the
covariance of the process (2.1) is precisely Ch(s, t) given by (1.2). Therefore ζh exists. (2) It
can be shown by means of the fractional Laplacian ∆h = −(−∆)h/2 that the function Ch(s, t)
defined by (1.2) is non-negative definite. Therefore a Gaussian random field on R with Ch(s, t)
as its covariance exists. The proof is analogous to the one in Bojdecki and Gorostiza (1999).
Existence of ζh for h ≥ 1 also follows from the results in Section 3, where Ch(s, t) appears as a
limit of covariances, and therefore is non-negative definite.

In the following theorem and subsequent remarks we give the properties of sub-fBm ζh and
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comparisons with fBm. Recall that ξh denotes fBm and Rh(s, t) its covariance.

Theorem. Sub-fBm ζh, h ∈ (0, 2), has the following properties:

(1) Self-similarity:

{ζh(at), t ≥ 0} d= {ah/2ζh(t), t ≥ 0} for each a > 0.

(2) Covariance: For all s, t > 0,

Ch(s, t) > Rh(s, t) if h < 1,
Ch(s, t) < Rh(s, t) if h > 1,

Ch(s, t) > 0. (2.2)

(3) Second moment of increments: For all s ≤ t,

E(ζh(t)− ζh(s))2 = −2h−1(th + sh) + (t+ s)h + (t− s)h, (2.3)

(2− 2h−1)(t− s)h ≤ E(ζh(t)− ζh(s))2 ≤ (t− s)h if h > 1, (2.4)

(t− s)h ≤ E(ζh(t)− ζh(s))2 ≤ (2− 2h−1)(t− s)h if h < 1, (2.5)

and the constants in these inequalities are the best possible.

(4) Hölder continuity: ζh has a continuous version for each h, and for each 0 < ε < h/2 and
each T > 0 there exists a random variable Kε,T such that

|ζh(t)− ζh(s)| ≤ Kε,T |t− s|h/2−ε, s, t ∈ [0, T ], a.s. (2.6)

(5) Correlation of increments: For 0 ≤ u < v ≤ s < t, let

Ru,v,s,t = E(ξh(v)− ξh(u))(ξh(t)− ξh(s)), (2.7)

and
Cu,v,s,t = E(ζh(v)− ζh(u))(ζh(t)− ζh(s)), (2.8)

then

Cu,v,s,t =
1
2
[(t+ u)h + (t− u)h + (s+ v)h + (s− v)h

−(t+ v)h − (t− v)h − (s+ u)h − (s− u)h], (2.9)

Cu,v,s,t > 0 if h > 1. (2.10)

and
Cu,v,s,t < 0 if h < 1. (2.11)

If Du,v,s,t is defined by
Cu,v,s,t = Ru,v,s,t +Du,v,s,t, (2.12)

then
Du,v,s,t < 0 if h > 1, (2.13)

and
Du,v,s,t > 0 if h < 1. (2.14)
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For u ≥ 0, r > 0 let ρξh

u,r and ρζh

u,r denote the correlation coefficients of ξh
u+r − ξh

u , ξ
h
u+2r − ξh

u+r

and ζh
u+r − ζh

u , ζ
h
u+2r − ζh

u+r, respectively. Then

|ρζh

u,r| ≤ |ρξh

u,r|. (2.15)

lim
s,t→∞

Cu,v,s,t = 0, (2.16)

Cu,v,s,t < 2h−2vh if h > 1, (2.17)

Cu,v,s,t > −1
2
vh if h < 1, (2.18)

Cu,v,s+τ,t+τ ∼
h(h− 1)(2− h)

2
(t− s)(v2 − u2)τh−3 as τ →∞ if h 6= 1. (2.19)

(6) ζh is not a Markov process if h 6= 1.

(7) ζh is not a semimartingale if h 6= 1.

(8) Integral representations (for h 6= 1):
Moving average representation:

ζh(t) =
1

C1(h)

∫
R
[((t− s)+)(h−1)/2 + ((t+ s)−)(h−1)/2 − 2((−s)+)(h−1)/2]dW (s),

where W is the Brownian measure on R and

C1(h) =
[
2
(∫ ∞

0
((1 + s)(h−1)/2 − s(h−1)/2)2ds+

1
h

)]1/2

.

Spectral representation:

ζh(t) =
1

C2(h)

∫
R

cos(ts)− 1
is

|s|(1−h)/2dW̃ (s),

where W̃ = W (1) + iW (2) is a complex Gaussian measure on R such that

W (1)(A) = W (1)(−A), W (2)(A) = −W (2)(−A), E(W (1)(A))2 = E(W (2)(A))2 =
1
2
|A|,

(here | · | denotes Lebesgue measure on R), and

C2(h) =
(

π

hΓ(h) sin(πh/2)

)1/2

.

Remarks

(a) The increments of fBm are self-similar in the sense that

ξh(t+ aτ)− ξh(t) d= ah/2(ξh(t+ τ)− ξh(t)) for each a > 0,

but sub-fBm does not have this property.

(b) Clearly sub-fBm does not have stationary increments, but this property is replaced by the
inequalities (2.4) and (2.5).

(c) Recall that Ru,v,s,t > 0 (resp. < 0) if h > 1 (resp. < 1). Formulas (2.7), (2.8), (2.10), (2.11),
(2.12), (2.13) and (2.14) show that the covariances of increments of sub-fBm on non-overlapping
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intervals have the same sign but are smaller in absolute value than those of fBm. (2.15) shows
that the increments of sub-fBm on intervals [u, u+ r], [u+ r, u+ 2r] are more weakly correlated
than those of fBm. Moreover, for h < 1 it can be shown, with essentially the same proof, that
the same property holds for arbitrary intervals [u, v], [s, t], with v ≤ s, and it is also true (with
a longer proof) for h > 1 and intervals [0, v], [s, t]. We have not been able to prove it for h > 1
and arbitrary [u, v], [s, t], v ≤ s.

(d) In contrast to (2.16), for fBm lim
s,t→∞

Ru,v,s,t = 0 only for 0 < h ≤ 1.

(e) Inequalities (2.17) and (2.18) show that the upper end point of the lower interval (u, v) has
a dominating effect on the correlation Cu,v,s,t if s is not large. By (2.16) this effect becomes
irrelevant for large s.

(f) Inequality (2.17) implies that for h > 1,

lim sup
v→0

1
vh
C0,v,s,t ≤ 1,

whereas for fBm, from (2.25) below, we have

lim
v→0

1
vh
R0,v,s,t = ∞.

This means that the increments on the intervals [0, v] and [s, t] approach independence as v → 0
faster for sub-fBm than for fBm, and in the case of sub-fBm this occurs uniformly with respect
to the intervals [s, t], s > δ > 0.

(g) fBm and sub-fBm become similar for large t in the sense that for each τ > 0,

lim
t→∞

Ch(t, t+ τ)
Rh(t, t+ τ)

= 2− 2h−1,

but on the other hand

lim
t→∞

t−h[Ch(t, t+ τ)−Rh(t, t+ τ)] = 1− 2h−1.

(h) In contrast to (2.19), Ru,v,s+τ,t+τ ∼ h(h−1)
2 (t − s)(v − u)τh−2 as τ → ∞ if h 6= 1. Thus the

long-range dependence decays at a higher rate for sub-fBm than for fBm. This, together with
Remark (c), justifies the name sub-fractional Brownian motion for ζh.

(i) The method of proof for (7) can also be used to show that fBm is not a semimartingale if
h 6= 1 (see Bojdecki et al, 2002, Lemma 2.5).

Proof of the Theorem

(1) The self-similarity is obvious from the form of Ch(s, t) in (1.2).

(2) The first two assertions are obvious. It follows from (2.3) (which is an immediate conse-
quence of (1.2)) that

2h−1(th + sh) ≤ (t+ s)h + (t− s)h, s < t

Applying this inequality with t′ = t+ s and s′ = t− s we have

(t+ s)h + (t− s)h < 2(th + sh), 0 < s < t,
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which proves (2.2) by (1.2).

(3) (2.3) Let h > 1. Then
(t+ s)h ≤ 2h−1(th + sh).

Hence 2h−1(th + sh)− (t+ s)h ≥ 0, and we look for the maximum δ ≥ 0 and the minimum γ > 0
such that

γ(t− s)h ≥ 2h−1(th + sh)− (t+ s)h ≥ δ(t− s)h. (2.20)

Denote x = t− s ≥ 0 and consider

γxh ≥ 2h−1((s+ x)h + sh)− (2s+ x)h ≥ δxh.

The function x 7→ 2h−1((s+x)h +sh)−(2s+x)h−γxh is 0 at x = 0, so we look for the minimum
γ such that this function decreases for x > 0, and we find

min γ = 2h−1 − 1. (2.21)

By a similar argument we find
max δ = 0. (2.22)

Therefore (2.21) and (2.22) are the best constants for (2.20), and (2.4) follows from (2.3) and
(2.20).

Now let h < 1. Then
(t+ s)h ≥ 2h−1(th + sh),

and we look for the maximum δ and the minimum γ such that

γ(t− s)h ≥ (t+ s)h − 2h−1(th + sh) ≥ δ(t− s)h.

Proceeding similarly as above we find (2.5).

(4) (2.6) is a consequence of (2.4) and (2.5) by Kolmogorov’s criterion, but of course this also
follows from the representation (2.1) of ζh.

(5) We have from (2.8)

Cu,v,s,t = Ch(v, t)− Ch(v, s)− Ch(u, t) + Ch(u, s),

so (2.9) follows from (1.2). Write (2.9) as

Cu,v,s,t =
1
2
(g(t)− g(s)) (2.23)

where
g(t) = −(t+ v)h − (t− v)h + (t+ u)h + (t− u)h. (2.24)

For h ∈ (1, 2) the function x 7→ xh−1 is concave, hence

(t+ v)h−1 + (t− v)h−1 < (t+ u)h−1 + (t− u)h−1,

which implies that d
dtg(t) > 0. Thus Cu,v,s,t increases for t > s, and since it vanishes at t = s,

then (2.10) holds.
An analogous argument proves (2.11), using this time the fact that the function x 7→ xh−1

is convex for h ∈ (0, 1).
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The covariance (2.7) of the increments of fBm is given by

Ru,v,s,t =
1
2
[(t− u)h − (t− v)h + (s− v)h − (s− u)h], (2.25)

hence from (2.9) and (2.12) we have

Du,v,s,t =
1
2
[(t+ u)h − (t+ v)h + (s+ v)h − (s+ u)h].

Writing

Du,v,s,t =
1
2
(f(t)− f(s)), t ≥ s,

where f(t) = (t + u)h − (t + v)h, we see that the function t 7→ Du,v,s,t decreases if h > 1 and
increases if h < 1, and since it vanishes at t = s, then (2.13) and (2.14) follow.

We have ρξh

u,r = r−hRu,u+r,u+r,u+2r since E(ξh(t)− ξh(s))2 = |t− s|h, and

ρζh

u,r =
Cu,u+r,u+r,u+2r

(Vu,u+rVu+r,u+2r)1/2
,

where Vs,t = E(ζh(t)− ζh(s))2. By (2.10)-(2.14) and the fact that R > 0 if h > 1 and R < 0 if
h < 1, it is easily seen that (2.15) is equivalent to

1 +
Du,u+r,u+r,u+2r

Ru,u+r,u+r,u+2r
≤ (Vu,u+rVu+r,u+2r)1/2

rh
. (2.26)

If h < 1 then the left hand side is smaller than 1 (by (2.14)) and the right hand side is bigger
than 1 (by (2.5)), hence (2.26) follows.

Now let h > 1. By (2.3), (2.9), (2.25), putting x = 2u/r we obtain that (2.26) is equivalent
to

2h − 2 + 2(x+ 2)h − (x+ 1)h − (x+ 3)h

≤ (2h−1 − 1)[2 + 2(x+ 1)h − xh − (x+ 2)h]1/2[2 + 2(x+ 3)h − (x+ 2)h − (x+ 4)h]1/2.

Denote a(x) = (x+ 2)h + xh − 2(x+ 1)h, x ≥ 0. We have to prove that

a(0)− a(x+ 1) ≤ 1
2
a(0)[2− a(x)]1/2[2− a(x+ 2)]1/2

for all x ≥ 0. Since a is decreasing it suffices to prove that

a(0)− a(x+ 1) ≤ 1
2
a(0)(2− a(x)),

or
a(x)

a(x+ 1)
≤ 2
a(0)

. (2.27)

Observe that the function x 7→ a(x)/a(x+ 1) is decreasing on R+. Indeed, it is easily seen that
(−1)n dn

dxna(x) ≥ 0 for n = 0, 1, 2, . . . (recall that 1 < h < 2), hence, by Bernstein’s theorem a
is the Laplace transform of some positive measure on R+ (see e.g. Feller, 1971). Then, by the
Schwarz inequality a(x+y

2 ) ≤ [a(x)a(y)]1/2, and this inequality implies that log a(x) is a convex
function. So d

dx log a(x) ≤ d
dx log a(x+ 1), which yields d

dx
a(x)

a(x+1) ≤ 0.
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As a consequence we have a(x)/a(x+1) ≤ a(0)/a(1) for x ≥ 0, so to obtain (2.27) it suffices
to prove that a(0)/a(1) ≤ 2/a(0) or, explicitly, (1/2)4h ≤ 3h − 1, which can be verified by
calculus (the function h 7→ 3h − 1 − (1/2)4h is concave on [1, 2], equal to zero at 1 and 2). So
(2.15) is proved.

(2.16) can be proved from (2.9) by Taylor’s formula or by l’Hôpital’s rule.
Let h > 1. Using the notation (2.23) and (2.24) we have

Cu,v,s,t − 2h−2vh =
1
2
(g(t)− g(s)− 2h−1vh).

Since g(t) is increasing, in order to prove (2.17) it is enough to show that

lim
t→∞

(g(t)− g(s)) ≤ 2h−1vh,

but limt→∞ g(t) = 0 (proof of (2.16)), so it remains to show that

−g(s) ≤ 2h−1vh. (2.28)

The function x 7→ (1 + x)h + (1− x)h − 2− 2h−1xh, 0 ≤ x < 1, is decreasing, hence

(s+ v)h + (s− v)h ≤ 2sh + 2h−1vh.

and by convexity
−(s+ v)h − (s− v)h ≤ −2sh.

Hence (2.28) is true and (2.17) is proved.
(2.18) is proved similarly.
(2.19) can be proved by l’Hôpital’s rule.

(6) ζh is not Markovian because the covariance Ch(s, t) in (1.2) does not have triangular property
(e.g. Neveu, 1968).

(7) The non-semimartingale property of ζh follows from the inequalities (2.4) and (2.5), which
imply that (on a bounded time interval) for h > 1 the quadratic variation of ζh is 0 and the
trajectories have infinite variation, and for h < 1 the quadratic variation of ζh is infinite. This
is a consequence of a general result proved in Bojdecki et al (2002), Lemma 2.5.

(8) The integral representations for ζh follow from the corresponding ones for fBm ξh (Samorod-
nitsky and Taqqu, 1994; see also Nualart, 2003) and (2.1).

3. Occupation time fluctuations

In this section we show how fBm ξh and sub-fBm ζh arise from occupation time fluctuations
of some particle systems for h ≥ 1.

Consider a particle system in Rd where the particles independently migrate according to a
symmetric α-stable Lévy process (α ∈ (0, 2]) and branch at rate V according to a critical binary
branching law, and such that at the initial time 0 the particles are distributed by a Poisson
random measure with intensity λ (Lebesgue measure). We denote by Nt the empirical measure
of the system at time t, i.e., Nt is a random point measure on Rd such that Nt(A) is the number
of particles present in the set A at time t. We write 〈µ, f〉 =

∫
fdµ where µ is a measure and
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f a measurable function. We consider test functions ϕ ∈ S(Rd) (the usual space of rapidly
decreasing C∞ functions).

For T > 0, let LT (t) denote the occupation time of the system at time Tt, i.e.

〈LT (t), ϕ〉 =
∫ Tt

0
〈Ns, ϕ〉ds = T

∫ t

0
〈NTs, ϕ〉ds, t ≥ 0.

The parameter T will tend to ∞ and t is the time variable of the process. Due to criticality of
the branching and invariance of λ for the semigroup of the motion we have

E〈LT (t), ϕ〉 = Tt〈λ, ϕ〉.

We define the occupation time fluctuation process XT = {XT (t), t ≥ 0} by

〈XT (t), ϕ〉 =
1
FT

(〈LT (t), ϕ〉 − Tt〈λ, ϕ〉)

=
T

FT

∫ t

0
(〈NTs, ϕ〉 − 〈λ, ϕ〉)ds, t ≥ 0, (3.1)

where FT is a norming. The task concerning the behavior of the particle system consists in
proving that for an appropriate FT , the process XT converges in distribution as T → ∞ to
a Gaussian process in the function space C([0, τ ],S ′(Rd)) for any τ > 0, where S ′(Rd) is the
space of tempered distributions. This is done in Bojdecki et al (2004) for the cases of long-range
dependence. However, for our purpose in this paper it suffices to compute the covariance of XT

(which tells what FT should be) and obtain its limit as T →∞.
Taking covariance in (3.1) we have

Cov(〈XT (s), ϕ〉, 〈XT (t), ψ〉) =
T 2

F 2
T

∫ s

0
du

∫ t

0
dv Cov(〈NTu, ϕ〉, 〈NTv, ψ〉). (3.2)

The covariance of the empirical measure process N is given by

Cov(〈Nu, ϕ〉, 〈Nv, ψ〉) = 〈λ, ϕTv−uψ〉

+ V

∫ u

0
〈λ, ϕTu+v−2rψ〉dr, u ≤ v, (3.3)

where Tt is the semigroup of the α-stable process (derivations of covariance formulas of this type
can be found e.g. in Gorostiza, 1983, and Gorostiza and Rodrigues, 1999). The model without
the branching corresponds to V = 0.

We now express the covariance (3.3) by means of the Fourier transform. Recall that the
Fourier transform ϕ̂ of ϕ ∈ S(Rd) is defined by

ϕ̂(z) =
∫

Rd
eix·zϕ(x)dx,

(x · z is the inner product in Rd). Using the formulas

〈λ, ϕψ〉 =
1

(2π)d

∫
Rd
ϕ̂(z)ψ̂(z)dz,

and
T̂tϕ(z) = e−t|z|αϕ̂(z),
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we obtain from (3.3)

Cov(〈Nu, ϕ〉, 〈Nv, ψ〉)

=
1

(2π)d

(∫
Rd
ϕ̂(z)(Tv−uψ)̂ (z)dz + V

∫ u

0

∫
Rd
ϕ̂(z)(Tu+v−2rψ)̂ (z)dzdr

)
=

1
(2π)d

∫
Rd
ϕ̂(z)ψ̂(z)

(
e−(v−u)|z|α + V

∫ u

0
e−(u+v−2r)|z|αdr

)
dz

=
1

(2π)d

∫
Rd
ϕ̂(z)ψ̂(z)

(
e−(v−u)|z|α + V

e−(v−u)|z|α − e−(v+u)|z|α

2|z|α

)
dz, u ≤ v, (3.4)

and substituting (3.4) into (3.2) we have

Cov(〈XT (s), ϕ〉, 〈XT (t), ψ〉)

=
1

(2π)d

T 2

F 2
T

(∫ s

0
du

∫ t

s
dv + 2

∫ s

0
dv

∫ v

0
du

)∫
Rd
ϕ̂(z)ψ̂(z)

·

(
e−T (v−u)|z|α + V

e−T (v−u)|z|α − e−T (v+u)|z|α

2|z|α

)
dz, s ≤ t. (3.5)

We have to take the limit in (3.5) as T →∞ for the systems without branching (V = 0) and
with branching (V > 0) and with appropriate dimensions d.

Case V = 0 (no branching).
Let d < α.
Making the change of variable z = zT (y) = T−1/α(v − u)−1/αy in (3.5) we have

Cov(〈XT (s), ϕ〉, 〈XT (t), ψ〉)

=
1

(2π)d

T 2−d/α

F 2
T

(∫ s

0
du

∫ t

s
dv + 2

∫ s

0
dv

∫ v

0
du

)
(v − u)−d/α

·
∫

Rd
ϕ̂(zT (y))ψ̂(zT (y))e−|y|

α
dy. (3.6)

To obtain convergence in (3.6) we put

FT = T 1−d/2α, (3.7)

and then

Cov(〈XT (s), ϕ〉, 〈XT (t), ψ〉)

→ 1
(2π)d

ϕ̂(0)ψ̂(0)
∫

Rd
e−|y|

α
dy

(∫ s

0
du

∫ t

s
dv + 2

∫ s

0
dv

∫ v

0
du

)
(v − u)−d/α

= 〈λ, ϕ〉〈λ, ψ〉 Γ(d/α)
2d−1πd/2αΓ(d/2)(1− d/α)(2− d/α)

(t2−d/α + s2−d/α − (t− s)2−d/α)

as T →∞. So,

Cov(〈XT (s), ϕ〉, 〈XT (t), ψ〉)

→ 〈λ, ϕ〉〈λ, ψ〉 Γ(2− h)
2d−1πd/2αΓ(d/2)h(h− 1)

(th + sh − (t− s)h), s ≤ t, (3.8)
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as T →∞, with h = 2− d/α.
The possible values of h are h ∈ (1, 3/2] for α ∈ (1, 2] and d = 1. The value h = 3/2

corresponds to Brownian particle motion (α = 2).
The temporal part of (3.8) has the form of the covariance Rh(s, t) of fBm in (1.1) with

h ∈ (1, 3/2].
Now let d > α. This case does not lead to long-range dependence, but it is needed in the

proof for the branching system.
Doing the integration on v in (3.5) we have

Cov(〈XT (s), ϕ〉, 〈XT (t), ψ〉)

=
1

(2π)d

T

F 2
T

∫
Rd

ϕ̂(z)ψ̂(z)
|z|α

∫ s

0
(2− e−Tu|z|α(1 + e−T (t−s+u)|z|α))dudz. (3.9)

To obtain convergence in (3.9) we put

FT = T 1/2 (3.10)

and then we have

Cov(〈XT (s), ϕ〉, 〈XT (t), ψ〉)

→ 1
(2π)d

∫
Rd

ϕ̂(z)ψ̂(z)
|z|α

dz2s = 2〈λ, ϕGψ〉s, s ≤ t, (3.11)

as T →∞, where G is the potential operator of the symmetric α-stable process,

Gψ(x) =
Γ(d−α

2 )
2απd/2Γ(α

2 )

∫
Rd

ψ(y)
|x− y|d−α

dy, d > α. (3.12)

The temporal part of the limit (3.11) is Bm.

Case V > 0 (branching).
Let α < d < 2α.
In (3.5), using (3.9) for the first term and making the changes of variable z = zT (y) =

T−1/α(v − u)−1/αy in the second term and z = wT (y) = T−1/α(v + u)−1/αy in the third term,
we have

Cov(〈XT (s), ϕ〉, 〈XT (t), ψ〉)

=
1

(2π)d

T

F 2
T

∫
Rd

ϕ̂(z)ψ̂(z)
|z|α

∫ s

0
(2− e−Tu|z|α(1 + e−T (t−s+u)|z|α))dudz

+
1

(2π)d

(∫ s

0
du

∫ t

s
dv + 2

∫ s

0
dv

∫ v

0
du

)
V

2
T 3−d/α

F 2
T

(
(v − u)1−d/α

∫
Rd
ϕ̂(zT (y))ψ̂(zT (y))

e−|y|
α

|y|α
dy

−(v + u)1−d/α

∫
Rd
ϕ̂(wT (y))ψ̂(wT (y))

e−|y|
α

|y|α
dy

)
. (3.13)

To obtain convergence in (3.13) we put

FT = T (3−d/α)/2 (3.14)
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and then, since the limit (3.11) holds with FT given by (3.10), we have

Cov(〈XT (s), ϕ〉, 〈XT (t), ψ〉)

→ V

2
1

(2π)d
ϕ̂(0)ψ̂(0)

∫
Rd

e−|y|
α

|y|α
dy

·
(∫ s

0
du

∫ t

s
dv + 2

∫ s

0
dv

∫ v

0
du

)
((v − u)1−d/α − (v + u)1−d/α)

= 〈λ, ϕ〉〈λ, ψ〉 V Γ(2− h)
2d−1πd/2αΓ(d/2)h(h− 1)

(
th + sh − 1

2
[(t+ s)h + (t− s)h]

)
, s ≤ t, (3.15)

as T →∞, with h = 3− d/α.
The possible values of h are h ∈ (1, 2), and h = 3/2 corresponds to d = 3 and Brownian

particle motion (α = 2).
The temporal part of (3.15) has the form of the covariance Ch(s, t) of sub-fBm in (1.2) with

h > 1.
It is worthwhile to compare the previous results for the branching system with those for

the system in equilibrium. The Poisson random measure is an equilibrium state for the system
without branching but not for the branching system. The branching system has an equilibrium
state for d > α, which results from the interplay between the extinction of single families due
to the critical branching and the replacement by families coming from far out by the transience
of the motion (Gorostiza and Wakolbinger, 1991). We look now at what happens with the
occupation time fluctuations of the branching system when the equilibrium state is taken as
initial condition.

The covariance of the process N started from equilibrium (which can be derived from Dawson
et al, 2001, or Gorostiza and Rodrigues, 1999) is given by

Cov(〈Nu, ϕ〉, 〈Nv, ψ〉) =
〈
λ, ϕTv−u

(
ψ +

V

2
Gψ

)〉
, u ≤ v, (3.16)

and we note that it has the same form as in the non-branching case with ψ replaced by ψ+ V
2 Gψ

(see (3.3)). Then we have that for α < d < 2α and FT = T (3−d/α)/2,

Cov(〈XT (s), ϕ〉, 〈XT (t), ψ〉) → 〈λ, ϕ〉〈λ, ψ〉 V Γ(2− h)
2dπd/2αΓ(d/2)h(h− 1)

(th + sh − (t− s)h), s ≤ t,

(3.17)
as T →∞, with h = 3− d/α.

We see from (3.8) and (3.17) that the system without branching (which is in equilibrium)
for d < α and the branching system in equilibrium for α < d < 2α have the same temporal
occupation time fluctuation limits.

We summarize the results on long-range dependence in the following table:

Initial Dimension Norming Temporal
condition structure

of limit
No branching Poisson d < α T 1−d/2α fBm
Branching Poisson α < d < 2α T (3−d/α)/2 sub-fBm
Branching Equilibrium α < d < 2α T (3−d/α)/2 fBm

The main observation is that, although for d > α the state of the branching system with Pois-
son initial condition approaches equilibrium as time flows (Gorostiza and Wakolbinger, 1994), in

12



the occupation time fluctuations the memory of the initial condition is not forgotten but persists
forever, and this results in sub-fBm as opposed to fBm. This difference exhibits explicitly the
long memory of the occupation time process of the branching particle system for α < d < 2α.

Concerning the interpretation of our results for the particle systems, we stress that in this
paper we relate the limit processes to the corresponding fluctuation processes of particle systems
via their covariances only. Much stronger results on functional convergence are obtained in
Bojdecki et al (2004).

Remarks
(a) Occupation time results for d ≥ α in the non-branching case and for d ≥ 2α in the branching
case are not relevant for the present paper because they do not lead to long-range dependence
(the time structure of the limit covariances is Bm in these cases).
(b) Another system which also leads to sub-fBm is the following. Let

Mt =
1√
2
(Nt +N−

−t), t ≥ 0,

where Nt is the empirical measure of the non-branching system at time t and N−
−t is the empirical

measure of the system at time −t (the non-branching system is defined for all t ∈ (−∞,∞)) but
with the particles having negative charge −1. The occupation time fluctuations of the process
Mt for d < α yield sub-fBm with h = 2− d/α.
(c) Concerning the conditions on d and α related with long-range dependence, we note that for
the α-stable process, d < α corresponds to “strict recurrence” (i.e., recurrence except at the
border to transience, d = α) and α < d < 2α corresponds to “strict weak transience” (i.e.,
weak transience except at the border to strong transience, d = 2α). See e.g. Sato (1999) for
recurrence/transience of α-stable processes.
(d) The denominator |z|α in formulas (3.4) and (3.5) is related to the condition d > α for the
branching system. However, z = 0 is not a singularity. A change of variable can be made before
the last step in (3.4) (z = T−1/α(u+v−2r)−1/αy), and this leads to a limit without requiring the
condition d > α, which coincides with (3.15) if d > α. The reason for assuming d > α from the
beginning is that this is the necessary and sufficient condition for persistence of the branching
particle system (persistence/extinction dichotomy, Gorostiza and Wakolbinger, 1991).

Note
After this article was completed we learned about the paper of Dzhaparidze and van Zanten

(2004). They also consider a process of the form (2.1) (dividing by 2 rather than
√

2), regarded
as the “even” part of fBm. Their results are a series expansion of the process and an integral
representation with respect to Bm.
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