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Abstract

Consider a continuous time� �nite state� irreducible Markov chain whose jump

transitions are partitioned into one group that is regulated and the other group that is

not� The regulated transitions are only allowed to occur if there is a token available� We

collect the tokens in a bu�er and allow a regulated transition to occur simultaneously

with the removal of a token from the bu�er� New tokens are added to the bu�er at a

constant Poisson rate but the regulated transitions will be blocked if they occur too

quickly�

We will apply matrix analysis to the joint distribution for the state of the Markov

chain and the number of tokens in the bu�er� We will give a simple stability condition

for the joint process and show that its steady state distribution will have a matrix

geometric distribution� Moreover� we obtain from our analysis a heavy tra�c limit for

this joint steady state distribution which has a product form structure�

This Markov chain model and steady state analysis generalizes the work of many

earlier papers on speci�c queueing systems such as Konheim and Reiser or Latouche

and Neuts� but most signi�cantly the work of Kogan and Puhalskii�

Keywords� Markov Chains� Matrix�Geometric Solution� Heavy�Tra�c Limits� Product

Form Solution� Tensor and Kronecker Products�
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� Introduction

In this paper� we consider a continuous time� �nite state� irreducible Markov chain �CTMC�
whose jump transitions are partitioned into one group that is regulated and the other group
that is not� The regulated transitions are only allowed to occur if there is a token available�
We collect tokens in a bu�er and allow regulated transitions to occur simultaneously with
the removal of a token from the bu�er� New tokens are added to the bu�er at a constant
Poisson rate� but the regulated transitions will be blocked if they occur too frequently�

This work is mainly motivated by the results we obtained in ���	 and ���	 for semi
open
networks� In ���	� we considered a semi
open network that consisted of N � � exponential
single server queues� The �rst queue is called the feeder queue and it has unlimited bu�er
space� The remainingN queues form a �ow controlled Jackson network which has collectively
no more than K customers� Arrivals are assumed to be Poisson for the feeder queue� The
feeder queue is blocked if the �ow controlled part has K customers� Unlike the open and
closed Jackson networks� this semi
open network does not have a product form solution� In
���	� we showed that the joint queue length process has matrix geometric structure for its
steady state distribution� We also exploited this matrix geometric structure� and proved a
heavy trac limit theorem for this network� In heavy trac� the semi open network decouples
into anM jGj� queue in heavy trac and a �ow controlled Jackson network that has a product
form solution� We also provided methods to calculate the parameters associated with the
M jGj� queue� As we reported in ���	� the parameters that characterize the heavy trac
limit are much easier to calculate than solving directly the matrix quadratic equation� We
also provided hybrid approximations for the feeder queue based on light and heavy trac
limits� The results in ���	� generalizes the work of many earlier papers on speci�c queueing
system and queueing networks such as Konheim and Reiser��	 ��	� Latouche and Neuts ��	
and Kogan and Puhkalski ��	� See ��	� ��	� ��	 for other related work on semi open networks�

The main aim of this paper is to extend the results in ���	 when the �ow controlled part
the semi open network is replaced by any irreducible �nite state continuous time Markov
chain �CTMC�� and the removal of a customer from the feeder queue is associated with
certain group of jump transitions of the CTMC� We assume that the jump transitions of
the CTMC are partitioned into two groups one that is regulated and other that is not�
Let b
transitions denote the regulated transitions� and c
transitions denote the unregulated
transitions� Given such a CTMC� we associate a token bu�er �that is generated by Poisson
arrivals� to this Markov chain� When we view the contents of the token bu�er and the state
of the Markov chain as a bivariate process� we coordinate the removal of a token from the
bu�er with that of b
transitions� The c
transitions are not a�ected by the external tokens�
The b
transitions are only allowed to occur when there is a token in the bu�er� Using matrix
analysis� we show that the joint distribution of the bu�er contents and the state of the
Markov chain exhibits a matrix geometric structure� Moreover� using the matrix geometric
structure� we prove that in heavy trac the distribution of bu�er length is exponential�

This paper is organized as follows� The main results of the paper are provided in Section
�� We use tensors and Kronecker products machinery developed in Massey ��	 to describe
our results� In Section �� we prove that the steady state distribution of the joint process
has matrix geometric structure� Section � is devoted to the proof of the heavy trac limit
theorem� In Section �� we use a deeper analysis of the matrix geometric solution to prove
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the theorems of Sections � and ��

� Statement of Results

Consider a continuous time Markov Chain �CTMC� �X �
n

�Xt

��� t � �
o
with �nite state space

S and Markov generator A� �X	� We will assume that A� �X	 is irreducible but it decomposes
into two subgenerators B and C
 namely A� �X	 � B �C where B and C are both Markov
generators but neither of them are necessarily irreducible� We are interested in constructing
a bivariate CTMC �Q�X� on Z� � S where the set Z� of nonnegative integers counts the
number of tokens available for transitions due to the subgenerator B� The transitions due
to subgenerator B are coordinated or synchronized with the use of these tokens
 but the
transitions due to subgenerator C are independent of this external resource� We construct
the CTMC �Q�X� on Z� � S such that the downward transitions of Q are coordinated or
synchronized with the transitions due toB on S and the transitions due toC are independent
of any transitions of Q� We call this bivariate CTMC �Q�X� a regulated Markov chain� The
transitions for the process X are identical to those of �X when the use of a token is not
necessary or a token is needed and one is available� Therefore
 �X models the behavior of X
when we have an unlimited supply of tokens�

Let �n� �� denote the state of the bivariate CTMC �Q�X�� If we let � to be the birth
rate of the process Q
 b�� and c�� be the transitions rates corresponding to subgenerators B
and C respectively
 then the forward equations for the process �Q�X� can be written as�

d

dt
P �Qt � n�Xt � �� �

�P �Qt � n� �� Xt � �� �
X
��S

b��P �Qt � n � �� Xt � ��

�
X
��S

c��P �Qt � n�Xt � ��� ��� b��� � c����P �Qt � n�Xt � �� �����

where b is a realvalued mapping on S and b��� is the rate at which the Markov chain
associated with the subgenerator B
 leaves the state ��

When viewed as a row vector
 we will denote the function b by b� Since subgenerator
B plays a pivotal role in this regulated Markov chain
 it will be useful to write it as B �
B� ���b�� The matrix B� has all zero diagonal entries but its o�diagonal terms match
those of B� The matrix��b� plays the dual role of being a diagonal matrix
 but its diagonal
entries are the same as the ones for �B�

When we have an unlimited supply of tokens
 then E�b� �X��	 equals the long run average
rate at which a B transition occurs on S� This is also the maximum rate at which the process
�Q�X� consumes tokens� This interpretation motivates the following steady state theorem
for �Q�X��

Theorem ��� If � � E�b� �X��	� then the steady state distribution for the joint process �Q�X�
is

P�Q � n�X � �� � g�neT� �����
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where � is the minimal non�negative solution to the matrix quadratic equation

��B� ���C���b�� �I� � �I � � �����

with spectral radius strictly less than one� and g is the vector solution to

g��B� �C� �I� � �� �����

such that g�I������T � �� Moreover� if � � E�b� �X��	� then the spectral radius of � equals
one� and the system is unstable�

This theorem implies that we enter the heavy tra�c regime when � approaches E�b� �X��	�
Our heavy tra�c limit �in the spirit of Kingman� has a simple product form structure�

Theorem ��� Let ���� be the positive Perron�Frobenius eigenvalue for � as a function of
�� If we set � � E�b� �X��	 then�

lim
���

P

�
�� � ��Q � z�X � �

�
�
�
�� e�z��

�����
�
P

�
�X � �

�
�����

where P
�
�X � �

�
is the stationary distribution of the CTMC �Xt� Moreover� if

n
�Nt

��� t � �
o

counts the number of transitions in
n

�Xt

��� t � �
o
due to the transitions from generator B�

then

�

������
� lim

t��

E

h
�Nt

i
� Var

h
�Nt

i
�t

� lim
t��

E

h
b� �Xt�

i
� Cov

h
�Nt� b� �Xt�

i
� �����

Equivalently� we can say that

�

������
� �� �X	 � bT � �� �N� �X	 � bT �����

where �� �X	 and �� �N� �X	 are the unique vector solutions to

�� �X	A� �X	 � � and �� �N� �X	A� �X	 � �� �X	��I�B�� �����

such that �� �X	 � �T � � and �� �N� �X	 � �T � ��

Corollary ��� Given the above hypothesis� we have

lim
���

�� � ��E�Q	 � ������� �����

� Proof of the Steady�State Theorem

We can prove Theorem ��� by �rst proving a theorem
 which we prove in Section �
 that
says our matrix quadratic equation can be solved and the solution has several important
properties�
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Theorem ��� Given the matrix quadratic equation ������ we can �nd a matrix solution �

that is unique� strictly positive when � � �� and minimal where

�� �X	� � �� �X	 and �bT � ��T� �����

with
�� �X	� � �� �X	 or �bT � ��T� �����

Moreover� � is a continuous function of the parameter ��

To prove our steady state result for �Q�X�
 we combine this theorem with the following tools
of vector
 tensor
 and matrix analysis�

Let en be the nth unit basis vector for in�nite row vectors� De�ne R and L respectively
as the right and left shift operators such that for all n � Z� � f�� �� � � �g


enR � en��

and

enL �

�
en�� if n � �

� otherwise�

Using these primitive operators
 the generator A for the M jM j� queue length process Q can
be compactly written as

A�Q	 � �R� 	L� �I� 	LR�

Noting the correspondence between the state of the queue n and the unit basis vector en
 we
see that R encodes the action of an arrival to the queue and L encodes the action of service
�and departure� from the queue� If f and g both belong to 
�Z��
 the space of realvalued

functions on Z�
 let f � g be a function in 
�Z���
 where

�f � g	�m�n� � f�m�g�n�

For example
 f �
P

n�Z� f�n�en for all f � 
�Z��
 where

en�m� �

�
� n � m�
� n �� m�

If h belongs to 
�Z���
 then

h �
X
n�Z��

h�n�en� � en�

and so 
�Z��� � 
�Z��
��� � 
�Z��� 
�Z���

If A and B are both linear operators on 
�Z��
 then we de�ne A � B to be a linear
operator on 
�Z��� where

�en� � en���A�B	 � �en�A�� �en�B��

Note that
A�B � �A� I	 � �I�B	�
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Also de�ne
R� � R� I�L� � L� I�R� � I�R� and L� � I� L

Moreover
 we de�ne operators like B�
� from B� the same way that we de�ned R� and L�


namely
B�

� � I�B��C� � I�C� and ���b� � I���b��

Proof of Theorem ���� If � � E�b� �X��	
 then

�bT � ��T but �� �X	� �� �� �X	� �����

This holds since by Theorem ��� we know that �� �X	� � �� �X	 and �bT � ��T implies
� � E�b� �X��	� By PerronFrobenius theory
 the inequality of ����� implies that � � �� This
implies that �I����� exists and is a strictly positive matrix�

�From the condition �bT � ��T
 we obtain

��B� �C� �I��T � �bT � ��T � �� �����

It follows from ����� that there exists a strictly positive vector g such that ����� holds�
Now we construct the following tensor�

��Q�X	 �
�X
n��

en � g�n� �����

It has the property that

��Q�X	L� � ��Q�X	�� and ��Q�X	�I� L�R�� � e� � g� �����

Now write A�Q�X	 as follows�

A�Q�X	 � �R� � L�B
�
� �C� � �I� L�R����b�� �����

We decompose the generator into

A�Q�X	 � A�Q�X	L�R� �A�Q�X	�I� L�R�� �����

where

A�Q�X	L�R� � �R� � L�
�R�B

�
� � L�R�C� � �L�R� � L�R����b� �����

� �L�
�B

�
� � L��C� ����b�� �I� � �I	R� ������

and
A�Q�X	�I� L�R�� � �L�B

�
� �C� � �I��I� L�R��� ������

Using �����
 we have

��Q�X	A�Q�X	L�R� � ��Q�X	���
�B

�
� ����C� ����b�� �I� � �I	R� ������

� ��Q�X	 �R� ���B� ���C���b�� �I� � �I	 ������

� � ������
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and

��Q�X	A�Q�X	�I� L�R�� � ��Q�X	���B
�
� �C� � �I��I� L�R�� ������

� �e� � g����B
�
� �C� � �I� ������

� e� � g��B� �C� �I� ������

� �� ������

Combining ������ and ������ we see that ��Q�X	A�Q�X	 � �� Since � � �
 we have

�X
n��

g�n�T � g�I������T �	� ������

This allows us to renormalize g and obtain g�I � �����T � �� Thus we have shown that
� � E�b� �X��	 implies that a steady state distribution for �Q�X� exists�

If � � E�b� �X��	
 then we must have

�� �X	� � �� �X	 but �bT �� ��T� ������

If this did not hold
 then by Theorem ��� we would have �bT � ��T and � � E�b� �X��	� The
equality of ������ means that � � �� Since we have shown that � � � when � � E�b� �X��	
and � � � when � � E�b� �X��	
 then by continuity
 we must have � � � when � � E�b� �X��	�
Moreover
 �� �X	� � �� �X	 coupled with � � E�b� �X��	 means that �bT � ��T�

Now we have a � that solves the matrix quadratic equation �����
 with � � � and a g
that satis�es ������ This allows us to construct a tensor

P�
n�� en�g�

n that solves the steady
state equations for the joint process �Q�X�� Since � � �
 we cannot renormalize this tensor
to obtain a strictly positive steady state distribution vector� Therefore �Q�X� is unstable
when � � E�b� �X��	� This completes the proof�

� Proof of the Heavy�Tra�c Theorem

To prove Theorem ���
 we must analyze the matrix solution in more depth� First we state a
theorem
 which we prove in Section �
 that shows when � is a di�erentiable function of ��

Theorem 	�� Let � � E�b� �X��	� The matrix ���� as a function of �� is a continuously
di�erentiable function when � � � � �� with ���� � � and ���� � �� Moreover� when
� � � � �� we have

����� �
�X
n��

�

�n��
�I����������n�� �B������n � �����

Finally� ������ � lim����
���� exists�

In turn
 we use this theorem to establish the di�erentiablity properties of the Perron
Frobenius eigenvalue and their positive eigenvectors �left and right� for the matrix solution�
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Corollary 	�� For � � � � �� let h��� and �h���T be the strictly positive right row and left
column eigenvectors for the Perron�Frobenius eigenvalue ���� of ����� namely

h������� � ����h��� and �����h���T � �����h���T� �����

with h��� � �T � � and h��� � �h���T � �� It follows that the eigenvectors h��� and �h����
as well as the eigenvalue ���� are all continuously di�erentiable functions on ��� ��� and the
derivative limits corresponding to h������ �h�����T� and ������ all exist�

We also prove this result in Section �� The relevance of these eigenvectors and the eigenvalue
as well as their derivatives is revealed in the next theorem
 which we prove at the end of this
section�

Theorem 	�� If � � E�b� �X��	� then we have the following probabilistic interpretations for
h and � when � � �	 at � � ��

h��� � lim
���

��X	 � �� �X	 �����

and
�

������
h����� � �� �N� �X	 �����

where

�

������
� ��� �X	 � �� �N� �X	� � bT � lim

t��

E

h
�Nt

i
� Var

h
�Nt

i
�t

� E�b� �X��	 � lim
t��

Cov� �Nt� b� �Xt�	�

�����
It follows that �� �X	 and �� �N� �X	 are the unique vector solutions to

�� �X	A� �X	 � � and �� �N� �X	A� �X	 � �� �X	��I�B�� �����

such that �� �X	 � �T � � and �� �N� �X	 � �T � ��

Proof of Theorem ���� De�ne the following vector for � � �


�

h
ei������Q� X

i
�

X
��S

E

h
ei������Q�X � �

i
e� �����

By Theorem ��� we can rewrite it as

�

h
ei������Q� X

i
� g�I� ei���������� �����

� g�I������I����I� ei���������� �����

� g�I������I� ��� ei��������I��������� ������

� ��X	

�
I�

�� ei������

det�I���
adj�I����

���
� ������

Now we de�ne ���x� �� to be the characteristic polynomial of ���� where

���x� �� � det�xI������� ������
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By PerronFrobenius theory
 it factors into

���x� �� � �x� ��������x� ��� ������

Note that
�������� �� � D��������� �� �� �� ������

where D��� denotes the partial derivative of �� with respect to the �rst argument� Using
Theorem ���
 its Corollary ���
 ������
 and ������ we get

lim
���

�� ei������

����� ��
�

�i

����������� ��
� ������

Using Corollary � to Theorem ��� of Seneta ���	 �page ��
 Corollary ���
 and Theorem ���
we have

lim
���

adj�I������ � ����� ���h���
T
h��� � ����� ���h���

T
�� �X	� ������

Combining these results
 we obtain

lim
���

�

h
ei������Q� X

i
� �� �X	

�
I�

i

������
�h���T�� �X	

���
�

�

�� i�������
�� �X	� ������

Now we are done once we observe that the term �����i�������� is the characteristic function
�Fourier transform of the density� for the exponential distribution with mean �������

Before we prove the remaining theorem that supports the proof of Theorem ���
 we will
need the next two propositions�

Proposition 	�	 If
n

�Nt

��� t � �
o
is the counting process for the transitions of �X due to B�

then

lim
t��

E� �Nt	

t
� E�b� �X��	� ������

and if limt�� Cov� �Nt� b� �Xt�	 exists� then

lim
t��

Var� �Nt	

t
� E�b� �X��	 � lim

t��
�Cov� �Nt� b� �Xt�	� ������

Proof� The joint process of � �N� �X� is Markov� Summing up their forward equations gives
us

d

dt
E�f� �Nt�	 � E

h�
f� �Nt � ��� f� �Nt�

�
b� �Xt�

i
� ������

where f is any realvalued function on the nonnegative integers� If we set f�n� � n
 then
we obtain

d

dt
E� �Nt	 � E�b� �Xt�	 ������

This equality says that the limit of the derivative of E� �Nt	 exists and so

lim
t��

E� �Nt	

t
� lim

t��

d

dt
E� �Nt	 � E�b� �X��	 ������

�



A similar argument holds for Var� �Nt	 where we use ������ for the case of f�n� � n� and
������ to obtain

d

dt
Var� �Nt	 �

d

dt
E� �N�

t 	� �E� �Nt	
d

dt
E� �Nt	 ������

� E

h
�� �Nt � ��b� �Xt�

i
� �E� �Nt	E�b� �Xt�	 ������

� E

h
b� �Xt�

i
� �Cov

h
�Nt� b� �Xt�

i
������

and the rest follows�

Note that ������ reduces the computation of the limit as t 
 	 for Var� �Nt	�t
 to the
computation of the same limit for Cov� �Nt� b� �Xt�	� In the next proposition we can show that
the latter can be achieved by solving a special set of linear equations�

Proposition 	�
 For all t � �� de�ne the following vector�

�t� �N� �X	 �
X
��S

Cov

h
�Nt� �Xt � �

i
e�� ������

We then have

d

dt
�t� �N� �X	 � �t� �N� �X	A� �X	 � pt� �X	

�
B� � E�b� �Xt�	I

�
� ������

Proof� De�ne the following tensor for the joint distribution of � �Nt� �Xt�


pt� �N� �X	 �
�X
n��

X
��S

P

n
�Nt � n� �X � �

o
en � e�� ������

Since the joint process of � �N� �X� is Markov
 we also have

d

dt
pt� �N� �X	 � pt� �N� �X	A� �N� �X	 ������

where
A� �N� �X	 � �R� � I�B�

� �A�� �X	� ������

Now let �T � I and nT � I
 where n � ��� �� �� � � �	
 be linear transformations acting on the
tensors such that

�en � e���
T � I � e� and �en � e��n

T � I � ne�� ������

We then have
�t� �N� �X	 � pt� �N� �X	 � nT � I� E�Nt	pt� �N� �X	 � �T � I ������

Since we have
A� �N� �X	 � nT � I � �T �B� � nT � �B�C� ������

and
A� �N� �X	 � �T � I � �T � �B�C�� ������

��



It follows that

d

dt
�t� �N� �X	 �

d

dt
pt� �N� �X	 � nT � I�

d

dt
E�Nt	pt� �N� �X	 � �T � I

� pt� �N� �X	A� �N� �X	 � nT � I�
d

dt
E� �Nt	pt� �N� �X	 � �T � I

�E�Nt	pt� �N� �X	A� �N� �X	 � �T � I

� pt� �N� �X	
�
�T �B� � nT � �B�C�

�
� E�b� �Xt�	pt� �X	� E�Nt	pt� �X	�B�C�

� �t� �N� �X	�B�C� � pt� �X	�B� � E�b� �Xt�	I��

and this completes the proof�

Corollary 	�� Given the same hypothesis as above� if we initialize �Xt in steady state� then

lim
t��

�t� �N� �X	 � �� �N� �X	� ������

where �� �N� �X	 is the unique solution to

�� �N� �X	A� �X	 � �� �X	�B� � E�b� �X��	I� � � ������

and �� �N� �X	 � �T � ��

Proof� Since �N� � �
 we must have ��� �N� �X	 � �� Moreover
 Cov� �Nt� �	 � � and so
�t� �N� �X	 � �T � � for all t � �� If we initialize �Xt in steady state
 then pt� �X	 � �� �X	 and
E�b� �Xt�	 � E�b� �X��	 for all t � �� Combining these results we have

d

dt
�t� �N� �X	 � �t� �N� �X	A� �X	 � �� �X	

�
B� � E�b� �X��	I

�
� ������

and its solution will be

�t� �N� �X	 � �� �X	
�
B� � E�b� �X��	I

� Z t

�
exp�sA� �X	�ds� ������

Now let �� �N� �X	 be the unique solution to

�� �N� �X	A� �X	 � �� �X	�E�b� �X��	I�B�� ������

and �� �N� �X	 � �T � �� Substituting this into ������
 we get

�t� �N� �X	 � ��� �N� �X	A� �X	
Z t

�
exp�sA� �X	�ds ������

� ��� �N� �X	
Z t

�

d

ds
exp�sA� �X	�ds ������

� �� �N� �X	�I� exp�tA� �X	��� ������

Since �� �N� �X	 � �T � �
 we can write this vector as a scalar times the di�erence of two
probability vectors� By the ergodicity property for irreducible Markov chains
 we then have

lim
t��

�� �N� �X	 exp�tA� �X	� � �� ������

��



�From this it follows that ������ holds�

Proof of Theorem 	��� De�ne the following vectors�

pt�X	 �
X
��S

P�Xt � ��e� and pt�X�Q � �	 �
X
��S

P�Qt � �� Xt � ��e�� ������

as well as their limiting vectors

��X	 � lim
t��

pt�X	 and ��X�Q � �	 � lim
t��

pt�X�Q � �	� ������

Summing over the forward equations for �Q�X�
 we obtain the derivative of the marginal
distribution of X
 which is

d

dt
pt�X	 � pt�X�Q � �	B� pt�X	C� ������

Taking the limit as t
	
 we obtain

� � ��X�Q � �	B� ��X	C� ������

Whenever Q is unstable
 we have ��X�Q � �	 � ��X	
 and so equation ������ becomes

� � ��X	�B�C�� ������

By the irreducibility of A� �X	 � B�C
 we have ��X	 � �� �X	� It follows from Theorem ���
that

lim
���

��X	 � �� �X	� ������

Applying h��� to �����
 we get

� � h���
h
�����B� ������C���b�� �I� � �I

i
������

� h���
h
�����B� � �����C���b�� �I� � �I

i
������

Setting ���� � � gives us
� � h����B�C� ������

and so if we normalize h��� to have h��� � �T � �
 then when � � E�b� �X��	 we have

h��� � �� �X	� ������

Now we want to prove ������ By Theorem ���
 we can di�erentiate ������ with respect to
� and get

� �
d

d�
h���

h
�����B� � �����C���b�� �I� � �I

i
� h����

h
�����B� � �����C���b�� �I� � �I

i
�h��� �����������B� � ������C���b�� �I�� ����I� I	

��



Setting � � � gives us ���� � �� Combining this with ������
 we have

� � h������B�C	 � ������h����B� � �I	� ������

Finally
 using Corollary ��� we obtain ������
To obtain the identity for ������
 recall that � � � gives us

��T � �bT ������

Applying h and di�erentiating by � on both sides we get

� � �����h��� � bT � ����h���� � bT ������

Now take the limit as � � � and use Corollary ���

� � ��������� �X	 � bT � �� �N� �X	 � bT� � ������
�
E�b� �X��	 � lim

t��
Cov� �Nt� b� �Xt�	

�
� ������

which completes the proof�

� Vectors� Tensors� and Matrix Analysis

Now we prove the theorems of Section ��
Proof of Theorem ���� To show that ����� always has a minimal nonnegative solution

we �rst observe that due to the irreducibility of A� �X	
 the matrix C���b���I is invertible
for all � � �� Moreover
 its inverse is a nonnegative matrix� This means that the matrix
quadratic equation ����� is equivalent to the equation

� � ��B���I�C���b���� � ���I�C���b����� �����

Now we de�ne the sequence of matrices ��n	
 where ���	 � � and

��n� �	 � ��n	�B���I�C���b���� � ���I�C���b����� �����

Since the matrices B� and ��I�C���b���� are nonnegative we can easily show that the
sequence of ��n	 is monotonically increasing or

� � ���	 � ���	 � ���	 � � � � � �����

Moreover
 since B � B� ���b� we can show that

�� �X	�B� � �I���I�C ���b���� � �� �X	� �����

�From this result
 we can show by induction that for all n


�� �X	��n	 � �� �X	� �����

The fact that �� �X	 is a strictly positive vector means that the sequence of ��n	 is monotone
increasing and bounded above� Consequently
 a limit exists that will be the desired non
negative � with a spectral radius less than �� We can show by induction that each ��n	 is a

��



continuous function of �� It follows then by Dini�s theorem that � is a continuous function
of � as well�

Now since � exists
 we see by ����� that it is invertible� Since all invertible matrices
commute with their inverse
 � will be the minimal nonnegative solution to the matrix
quadratic equation ����� if and only if � is the minimal nonnegative solution to

�B��� �C���b�� �I��� �I � �� �����

As before we can construct the solution to this equation as a monotonically increasing
sequence of matrices ���n	 where ����	 � � and

���n� �	 � ��I�C���b���� ���n	B� ���n	 � ���I�C���b����� �����

The second equality of ����� holds for each ���n	 since

��I�C���b�����bT � ��T� � �T �����

and by induction hypothesis

���n � �	bT � ��I�C���b���� ���n	B� ���n	bT � ���I�C���b����bT �����

� ���I�C���b���� ���n	B��T � ���I�C���b����bT ������

� ���I�C���b���� ���n	bT � ���I�C ���b����bT ������

� ���I�C���b�������T � bT� ������

� ��T� ������

and the rest follows as before�
Finally
 to show that ����� holds
 we apply �T to ����� and obtain

� � �I������T ��bT� ������

If �� �X	� �� �� �X	
 then � � �� This makes I�� an invertible matrix and so ��T��bT � �
holds� This completes the proof�

Now we prove the matrix analytic results of Section �� First
 we show that ���� is a
continuously di�erentiable function of � when � � � � ��
Proof of Theorem 	��� �By Theorem ��� we know that ���� � � when � � � � � holds��
For some small parameter �
 de�ne the matrix

D��� �� �
�

�
����� �������� ������

If we subtract the matrix quadratic equation for ���� from the analogous equation for
���� �� then we get

���� ��D��� ��B� �D��� �������B� �C���b�� �I	 � I����� �� � �� ������

Using �����
 the alternative to the matrix quadratic equation
 we can multiply the above
equation by ���� on both sides and obtain

���� ��D��� ��B������ �D��� �� � �I����� ������� � �� ������

��



If we let D��� be a matrix that is a limit point of the D��� ���s then we must have

����D���B������ �D��� � �I���������� � �� ������

Showing that ����� � lim���D��� �� is now equivalent to showing that the above equation
������ has a unique solution� This will be the case when ���� � � and we can show that

����� �
�X
n��

�

�n��
����n�I������ �����B��n���� ������

Since ����B��T � ����bT � ��T
 we have

j����B�j � �� ������

By Theorem ��� of Seneta ���	 �page �� we can decompose ���� into

���� � �����h���Th��� ����� ������

such that for all positive integers n


j����nj � ����njSj������n� ������

where ���� � � is a continuous function of �
 jSj is the number of states in S
 and ���� is
the modulus for the set of second largest eigenvalues �in absolute value� of ����� By Perron
Frobenius theory we have ���� � ���� even when � � �� We also have for all positive
integers n


����n � ����n�h���Th��� �����n� ������

If we have � � � � �
 then

����� �
�X
n��

�

�n��
�I����������n�� �B������n ������

�
�X
n��

�

�n��
�I����������n �����B��n���� ������

�
�X
n��

�

�n��
�I����������n �����B��n����

�
�X
n��

�

�n��
��� ���������n�h���Th��� �����B��n���� ������

�
�X
n��

�

�n��
�I����������n �����B��n����

���� ������h���Th�����I� ��������B��������� ������

For some closed interval �x� �	
 where � � x � �
 de�ne the following constants�

� � sup
x����

����� � � sup
x����

����� and h � sup
��S

sup
x����

�h����� ������

��



We bound the in�nite sum of ������ as follows�
���� �

�n��
�I����������n �����B��n����

���� ����	�

�
�

�n��
����njSj������n�� 
 �jSj��������n

�
����max

��S

�h���� 
 ��������
�

�����

�
�

�
�nk�n�� 
 �� �

�
h
 ��

�
� ������

By the continuity of � � we have � � �� If we sum ������ over the non�negative integers it
converges� By the Weierstrass M�test� it follows that the in�nite sum of ������ is a continuous
function of �� For the remaining term of ������� de�ne the characteristic polynomial of
�����B��

det�xI� ��������B�� � �x� ��������x� ��� ������

Notice that �������� �� ��  since ����� is the leading eigenvalue for ��������B�� Moreover�
����� is also the spectral radius for ��������B�� so ���� �� ��  follows from the fact that
���� � �� This gives us

��� ����� ��I� ��������B���� �
�� ����

det��I� ��������B��
adj ��I� ��������B��

�
�

����� ��
adj ��I� ��������B�� � ������

which converges in the limit as � � �� Thus we have shown that lim����
���� exists and is

�nite�

Now we prove that the continuous di�erentiability properties of �� extend to its Perron�
Frobenius eigenvalue and eigenvector�
Proof of Corollary ��� to Theorem ���� Since ���� is a distinct eigenvalue for ����
we have

	��x� �� � �x� ��������x� ��� ������

where �������� �� �� � We then obtain

	������� �
 
� � ������ ���
 
���������� �
 
�� ������

and deduce that ���� is di�erentiable since

����� ���
 
�



� �

	������� �
 
�� 	������� ��




�

�������� �
 
�
� ������

Now observe that the coe�cients of 	��x� �� are multinomial expressions of the entries for
���� which makes this polynomial di�erentiable in � for the case  � � � �� Moreover� note
that

D�	������� �� � 	������� ��� ������

where D� denotes the partial derivative with respect to the �rst argument of 	�� Observe
that 	������� �� �� � Letting 
�  will then give us

����� � �
D�	������� ��

�������� ��
� ������

��



where the numerator is the partial derivative in the second argument of the characteristic
polynomial for ����� It follows that the numerator is also a multivariate polynomial function
of the entries for both���� and������ Since������ exists� it follows from ������ that ������
exists also�

For h���� observe that

�h��

��h��������

�����

�I� � �h�������

�����������

�������I�� ����	�

Dividing both sides by 
 and taking the limit for any convergent subsequence shows that
h��� is di�erentiable since

h���������� ����I� � �h���������� �����I� �����

and h���� with the condition of h���� � �T �  is the unique solution for ������ Finally the
existence of ������ and ������ means that h����� exists also�
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