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Abstract. Herein, we characterize strong solutions of multidimensional sto-

chastic differential equations dXx0
t = b(Xx0

t , t)dt + σ(Xx0
t , t)dWt, Xx0

0 = x0

that can be represented locally as Xx0
t = φx0

(
t,

∫ t
0 Ux0 (u)dWu

)
, where W

is an multidimensional Brownian motion and U, φ are continuous functions.

Assuming that σ is continuously differentiable, we find that σ must satisfy a
commutation relation for such explicit solutions to exist and we identify all

drift terms b as well as U and φ that will allow X to be represented in this

manner. Our method is based on the existence of a local change of coordinates
in terms of a diffeomorphism between the solutions X and the strong solutions
to a simpler Itô integral equation.

1. Introduction

Inasmuch as computability can be of utmost importance, one often confines selec-
tion of stochastic differential equation models to those facilitating calculation and
simulation. This is best exemplified in mathematical finance, where the popularity
of the inaccurate Black-Scholes model is only justifiable through the evaluation ease
of the resulting derivative product formulae. Indeed, Kunita (1984, p. 272) writes
in his notes on stochastic differential equations that “It is an important problem
in applications that we can compute the output from the input explicitly”. Al-
though pedagogical considerations initially prompted our classifications of which
Itô processes Xx0

t , starting at x0, are representable as a time-dependent function of
a simple stochastic integral φx0

(
t,

∫ t

0
Ux0(u)dWu

)
, our determination of φx0 , Ux0

executes an effective means of calculation and simulation. To simulate, one merely
needs to compute the Gauss-Markov process

∫ t

0
Ux0(u)dWu at discrete times and

substitute these samples into φx0 , which is often known in closed form. Our work
also makes properties of certain stochastic differential equations readily discernible
and simplifies some filtering calculations. Finally, as demonstrated in Karatzas and
Shreve (1987), page 295 ff., explicit solutions can be useful in establishing conver-
gence for solutions of stochastic differential equations.

Doss (1977) and Sussman (1978) were apparently the first to solve stochastic
differential equations through use of differential equations. In the multidimensional
setting, Doss imposed the Abelian condition on the Lie algebra generated by the
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vector fields of coefficients and showed, in this case, that strong solutions, Xx0
t ,

of Fisk-Stratonovich equations are representable as Xx0
t = ρ(Φ(x0,W·)t,Wt), for

some continuous ρ, Φ solving differential equations. Under the restriction of C∞

coefficients, Yamato (1979) extended Doss by dispensing with the Abelian assump-
tion in favour of less restrictive q step nilpotency, whilst also introducing a simpler
form for his explicit solutions Xx0

t = u(x, t, (W I
t )I∈F ). Here, u solves a differen-

tial equation, and (W I
t )I∈F are iterated Stratonovich integrals with integrands and

integrators selected from
(
t,W 1

t , ...,W
d
t

)
. Another substantial work on explicit so-

lutions to stochastic differential equations is due to Kunita (1984), Section III.3.
He considers representing solutions to time-homogeneous Fisk-Stratonovich equa-
tions via flows generated by the coefficients of the equation under a commutative
condition similar to ours, and, more generally, under solvability of the underlying
Lie algebra. Kunita’s work therefore generalizes Yamato (1979). Perhaps, the two
most distinguishing features of our work are: We allow time-dependent coefficients
and utilize a different representation. We compare our results to these works in
Subsection 2.2.

In order to describe our method, we mention that the hitherto rather ad hoc
state space diffeomorphism mapping method can be used to construct solutions to
interesting stochastic differential equations from solutions to simpler ones. The
idea of this method is to change the infinitesimal generator L of a simple Itô
process to the generator corresponding to a more complicated Itô process via
Lf(x) = {L(f ◦ ψ)} ◦ ψ−1(x). For related examples, we refer the reader to the
problems on page 126 of Friedman (1975) or page 303 of Ethier and Kurtz (1986).
This corresponds to using Ito’s formula on Xt = ψ(ξt) for some continuously differ-
entiable, injective ψ, where ξ is a diffusion process with infinitesimal generator L.
Motivated by applications in filtering, Kouritzin and Li (1999) and Kouritzin (2000)
used differential equation methods to study: “When can global, time-dependent dif-
feomorphism be used to construct solutions to Ito equations?”, “What scalar Itô
equations can be solved via diffeomorphisms?”, and “How can one construct these
diffeomorphisms?”. They considered scalar solutions in an open interval D to the
time-homogeneous stochastic differential equation

(1.1) dXt = b(Xt)dt+ σ(Xt)dWt, X0 = x0,

which are of the form φx0

(
t,

∫ t

0
U(u)dWu

)
, and showed that all nonsingular so-

lutions of this form were actually (time-dependent) diffeomorphisms ψt(ξt) with ξ
satisfying

dξt = (χ− κξt)dt+ dWt, ξ0 = ψ−1
0 (x0).

Nonsingular in this scalar case was interpreted as finiteness of
∫ y

λ
σ−1(x)dx for some

fixed point λ and all y ∈ D. Their non-stochastic differential equations continued
to hold in the singular situation when global diffeomorphisms fail.

Herein, we consummate work on resolving the question: “When can we ex-
plicitly solve Itô equations like (1.1) through a representation of the form Xx0

t =
φx0

(
t,

∫ t

0
Ux0(u)dWu

)
?”, now concentrating on the rich vector-valued case, with

the dimensions of Xt,Wt being p, d respectively. Moreover, motivated by the
aforementioned applications, we consider solutions starting from every point in
a convex domain, that is a non-empty convex open set. In order to include as
many interesting examples as possible we will only require local representation
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Xt = φ
(
t,

∫ t

0
U(u)dWu

)
and allow σ to have rank less than min(p, d). The first

opportunity borne out of allowing the rank of σ(x) to be less than p is the ability
to handle time-dependent coefficients, treating time as an extra state. The second
advantage from allowing lesser rank than min(p, d) is the extra richness afforded
by appending a deterministic equation into the diffeomorphism solution: The dif-
feomorphism solutions are not just transformed Gaussian processes but rather are

constructed via Xt = ψt(Zt), with Zt =

[
Z

(1)
t

Z
(2)
t

]
, where Z(2)

t ∈ Rp−r is determinis-

tic, and Z(1) is a Gauss-Markov process satisfying

(1.2) dZ
(1)
t = {αt − βtZ

(1)
t }dt+

(
Ir

∣∣∣ γt

)
dWt,

for some coefficients αt, βt, and γt, depending on Z
(2)
t . The exact forms of Z(2)

t ,
αt, βt, and γt will be given after Theorem 2.

In the next section, we introduce notation and state the main results. Section
3 is devoted to applications, while the proofs of the theorems are postponed to
Section 4.

2. Notation and main results

We assume throughout that D ⊂ Rp is a convex domain, T > 0, and define

DT =
{
D if σ, b do not depend on t
D × [0, T ) if either do .

(x, s) ∈ DT means x ∈ D when DT = D. To deal with derivatives on DT , we
define:

Definition 1. Suppose O ⊂ DT is relatively open. For functions g ∈ C(O,Rp),

d

dt
g(x, t) = lim

h↘0

g(x, t+ h)− g(x, t)
h

for all (x, t) ∈ O such that the limit exists. We define C1(O; Rp) to be the functions
g ∈ C(O; Rp) such that { d

dxi
g(·, ·)}p

i=1,
d
dtg(·, ·), exist and are in C(O; Rp). More-

over, we define Cr(O; Rp) recursively to be the g ∈ C(O; Rp) such that d
dxi

g(·, ·)
d
dtg(·, ·) exist and are in Cr−1(O; Rp) for each i = 1, ..., p. For such functions of
both x and t, ∇xg is the Jacobian matrix of vector function g that is (∇g)i,j = ∂xj

gi

while ∇g will include the time derivative as the last column.

We suppose throughout that
A1: σ ∈ C1(DT ; Rp×d) and b ∈ C1(DT ; Rp).

Now, we let σj denote the jth column of the matrix σ, define

(2.1) h = b− 1
2

d∑
j=1

{∇xσj}σj on DT

and assume
A2: h ∈ C1(DT ; Rp).

Next, we consider functions φx0,s for each x0, s ∈ DT such that
A3: φx0,s ∈ C1,2((s, t0)×Nx0,s; Rp) satisfies limt↘s φ(t, 0) = x0, where t0(x0, s) >

s, and Nx0,s ⊂ Rp is a neighbourhood of 0 that can depend on x0, s,
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let (Wt)t≥0 be a standard d-dimensional Brownian motion with respect to filtration
{Ft}t≥0 satisfying the usual hypotheses on a complete probability space, and define

(2.2) Xx0,s
t = φ(t, Yt) = φx0,s(t, Y x0,s

t ) on [s, τ0
x0,s).

Here, Yt =
∫ t

s

U(u)dWu, and U = Ux0,s ∈ C1([s, T ); Rd×d) is such that Ux0,s(s) =

Id for all (x0, s) ∈ DT , and

τ0
x0,s = min (T, inf{t > s : φx0,s(t, Y x0,s

t ) 6∈ D or Det(Ux0,s(t)) = 0}) .
To simplify notation, the dependence of φ and U on x0, s will be often omitted.

Our first main result establishes necessary and sufficient conditions on σ, and h
for existence of b, φ, and U so that Xx0,s, defined in (2.2), is a strong solution to

(2.3) dXt = b(Xt, t)dt+ σ(Xt, t)dWt, Xs = x0

on [s, τx0,s), where τx0,s is Ft-stopping time, satisfying s < τx0,s ≤ τ0
x0,s. By

continuity of φ, and Y , P (τ0
x0,s > s) = 1 for all x0 ∈ D. We note that b, σ are

Lipschitz on any compact, convex subset of DT by our C1-conditions and use the
proof for Theorem II.5.2 of Kunita (1984) for existence and uniqueness of (strong)
local solutions to the SDE in the following theorem until they leave such a compact
subset. h is always related to b through (2.1).

Theorem 1. Suppose [A1,A2,A3] hold. Then, a local solution Xx0,s
t to dXt =

b(Xt, t)dt + σ(Xt, t)dWt, Xs = x0 has an explicit form φ(t, Yt) on [s, τx0,s), for
some stopping time s < τx0,s ≤ τ0

x0,s and each (x0, s) ∈ DT if and only if

(2.4) (∇xσk)σj = (∇xσj)σk on DT , for all j, k ∈ {1, ..., d},

and there exist x→ A(x) ∈ Rd×d, {εs(x0)}s≥0 ⊂ (0,∞) such that

(2.5) (σA)j − ∂tσj = {∇xσj}h− {∇xh}σj , for all 1 ≤ j ≤ d,

on DT and the following condition holds for all t ∈ [s, s+ εs), y in a neighborhood
of 0

(2.6) σ(φ(t, y), t){A(φ(t, y), t)− U−1(t)U̇(t)} = 0.

Then, for each fixed (x0, s) ∈ DT , there is a neighborhood Nx0,s of 0 ∈ Rd such that
φ satisfies the following system of differential equations

∇yφ(t, y)U(t) = σ(φ(t, y), t),(2.7)
∂tφ(t, y) = h(φ(t, y), t),(2.8)
φ(s, 0) = x0

for all t ∈ (s, τx0,s) and y ∈ Nx0,s.

Remark 1. The combination (2.5,2.6) constrain the possible h. For example,
when p = d and σ is nonsingular on DT , A and U can not depend on x and (2.6)
becomes equivalent to A(s) = U̇s(s). Naturally, the general case is much richer and
will require stronger conditions to study further. This is done in Theorem 2.

When one explicit solution exists, there will be a whole class of such solutions
corresponding to distinct b’s. We now embark on identifying the b’s, φ’s and U ’s
for these solutions. This necessitates introducing local diffeomorphisms.
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Definition 2. Suppose x̄ = (x0, 0) ∈ DT . Then, a x̄-local diffeomorphism (Ox̄, Λ̃)
is a bijection Λ̃ : Ox̄ → Λ̃(Ox̄) such that Λ̃ ∈ C1(Ox̄; R(p+1)×d), where Ox̄ ⊂ DT is a

(relatively open) neighbourhood of x̄. We define ∇Λ̃−1(Λ̃(x, t)) to be
[
∇Λ̃(x, t)

]−1

for (x, t) ∈ Ox̄.

Now, we can introduce our basic set of parameters for x̄ = (x0, 0):

Definition 3. Let P = Px̄
r,p,σ be the set of all (Λ̃, κ,B, θ) such that

P1) Λ̃(x, t) =
[

Λ(x, t)
t

]
if σ depends on time or Λ̃(x) = Λ(x) otherwise is a

x̄-local diffeomorphism from O ⊂ DT onto DT = Λ̃(O), where Λ =
[

Λ(1)

Λ(2)

]
with Λ(1) ∈ Rr;

P2) κ ∈ C1(DT ; Rr×(d−r)) depends only on xr+1, . . . , xp, and t;

P3) {(∇xΛ)σ} ◦ (Λ)−1 =
(
Ir κ
0 0

)
on DT ;

P4) B ∈ C1(DT ; Rr×r) depends only on xr+1, . . . , xp, and t;

P5) θ =
[
θ1
θ2

]
∈ C1(DT ; Rr)× C1(DT ; Rp−r) depends only on xr+1, . . . , xp, t.

To each (Λ, κ,B, θ) ∈ Pr,p,σ,DT
, we extend θ, κ,B to (R̄)p × (−T, T ), where R̄

is the extended real line, by defining them to be 0 off of DT and associate the
following functions:

(2.9)



c2 ∈ Rp−r uniquely solves ∂tc2 = θ2(c2, t), c2(0) = Λ(2)(x, 0);

G(t) =
(
Ir

∣∣∣ κt ◦ c2(t)
)
∈ Rr×d;

R(t) = Bt ◦ c2(t) ∈ Rr×r;
Q ∈ Rr×r is the unique solution of Q̇ = QR, Q(0) = Ir;

c =

[
c1

c2

]
, with c1(t) = Q−1(t)

{
Λ(1)(x0, 0) +

∫ t

0
Q(u)θ1(c2(u), u)du

}
.

These objects are well defined for t < T . With these definitions in hand, we
characterize all solutions Xx0

t = φx0(t, Yt) to (2.3) with s = 0. Accordingly, we
must strengthen our assumptions on σ. For the following theorem, we recall that b
and h are still related through (2.1) and assume:

C1: b, h ∈ C1(DT ; Rp).
∂r: σ ∈ Cr̄(DT ; Rp×d), where r̄ = r + 1 and r ∈ {1, 2, ...}.
Hr: The rank of σ is r and its first r columns are linearly independent on DT .

If σ has rank r yet Hr is not satisfied, we can simply permute the indices.

Theorem 2. Suppose that [C1,Hr,∂r] hold, and Xx0,s
t = φx0,s

(
t,

∫ t

0
Ux0,s(u)dWu

)
solves (2.3) up to some stopping time τx0,s satisfying 0 < τx0,s ≤ τ0

x0,s, for all
(x0, s) ∈ DT . Then, for any x0 ∈ D there exists ((Ox0 , Λ̃), κ,B, θ) ∈ Px0

r,p,σ, and
related functions c,G,R,Q defined by (2.9), such that

(2.10) ht = [∇xΛt]−1 ×
{
θt ◦ Λ(2)

t − ∂tΛt −
[

(Bt ◦ Λ(2)
t )Λ(1)

t

0

]}
on Ox0 ,
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(2.11) φ(t, y) = φ(Λ,κ,B,θ)(t, y) = Λ−1
t

(
c(t) +

[
Q−1(t)G(0)y

0

])

on Nx0 = {(t, y) : c(t) +
[
Q−1(t)G(0)y

0

]
∈ Λt(Ox0)}, and U is any solution to

G(0)U(t) = Q(t)G(t). Moreover,

Xx0,0
t = Λ−1

t

(
c(t) +

[
Q−1(t)Ỹt

0

])
up to τ ′x0

= min
(
τx0,0, inf {t > 0 : (t, Yt) /∈ Nx0}

)
, where

Ỹt = G(0)Yt =
∫ t

0

G(0)U(s)dW (s) =
∫ t

0

Q(s)G(s)dW (s).

Finally, if Λ̄ and κ̄ satisfies P1–P3, then there exist B̄, θ̄ such that (Λ̄, κ̄, B̄, θ̄) ∈ P,
b(Λ̄,κ̄,B̄,θ̄) = b(Λ,κ,B,θ), and φ(Λ̄,κ̄,B̄,θ̄) = φ(Λ,κ,B,θ).

The quantities Zt =

[
Z

(1)
t

Z
(2)
t

]
, αt, βt, and γt appearing in (1.2) are related to

our parameters in the following way: Zt = Λt(Xt), implying that Z(2)
t = c2(t),

αt = θ1(c2(t), t), βt = Bt ◦ c2(t), and γt = κ(c2(t), t).

Remark 2. There is no loss of generality in setting

Ux0(t) =
(
Q(t) Q(t)κ ◦ c2(t)− κ ◦ c2(0)

0 Id−r

)
.

It yields G(0)U(t) = Q(t)G(t) and U(0) = Id. Moreover, its inverse always exists

and is given by
(
Q−1(t) Q−1(t)κ ◦ c2(0)− κ ◦ c2(t)

0 Id−r

)
. When Ū also satisfies

Q(t)G(t) = G(0)Ū(t) we have that

G(0)Yt =
∫ t

0

G(0)Ū(s)dW (s) =
∫ t

0

Q(s)G(s)dW (s) =
∫ t

0

G(0)U(s)dW (s).

Suppose we set A = U̇(0) and
[
B B′

0 0

]
=

(
Ir κ
0 0

)
A (so B does not depend on

Λ(1)). Then, φ and h are uniquely determined by Λt, θ, and B through (2.11) and
(2.10).

Remark 3. To illustrate the need of the final statement of Theorem 2, we take for
example, σ(x) = x ∈ Rp. Then, any L ∈ C1(Rp) depending on x2/x1, . . . , xp/x1

satisfies (∇L)σ = 0. Therefore, Λ and hence the parameter set is not unique but
we can create the same b, φ from any consistent κ,Λ.

In the next two subsections, we compare our framework to Fisk-Stratonovich
equations, and our results with those appearing in Yamato (1979) and Kunita
(1984).
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2.1. Relation to Fisk-Stratonovich equations. It follows from, for example,
Kunita (1984) p. 239 that the unique local solutions of our Itô equation (1.1) and
of the Fisk-Stratonovich equation

(2.12) dXx0
t = h(Xx0

t , t)dt+ σ(Xx0
t , t) • dWt

are equal if (2.1) holds and σ is twice continuously differentiable or satisfies the Fisk-
Stratonovich acceptable condition in D. We refer the reader to Chapter 5 of Protter
(1995) for conditions that should be placed on the coefficients of Stratonovich equa-
tions when they are not C2. Therefore, irrespective of whether σ satisfies such a
condition or not we will always relate b and h through (2.1) in the sequel. To
avoid making a C2 or like assumption on σ, we will work with the slightly more
cumbersome Itô equations.

2.2. Comparison with the works of Yamato and Kunita. In Section III.3 of
Kunita’s (1984) treatise, he considers representations of time-homogeneous Fisk-
Stratonovich equations

(2.13) dXx0
t = h(Xx0

t )dt+ σ(Xx0
t ) • dWt

in terms of the flows generated by the vector fields X0(y) =
p∑

i=1

hi(y)
∂

∂yi
and

Xk(y) =
p∑

i=1

σik(y)
∂

∂yi
, k = 1, ..., d, under conditions imposed on the Lie algebra

L0(X0,X1, . . . ,Xd) generated by Xk, 0 ≤ k ≤ d. In the special case where these
vector fields commute, i.e. the Lie bracket [Xk,Xj ] = 0 for each j, k = 0, ..., d, and
the coefficients hi, σik are respectively in C3

α, C4
α (the locally four times continuously

differentiable functions whose fourth derivative is α-Hölder continuous), his work
gives rise to the composition formula

(Xx0
t )i = Exp (tX0) ◦ Exp

(
W 1

t X1

)
◦ · · · ◦ Exp

(
W d

t Xd

)
◦ χi(x),(2.14)

= φi(t,Wt)

locally. Here, χi is the function taking x to its ith component and Exp (sXk) is
the one parameter group of transformations generated by vector field Xk, i.e. the
unique solution to

(2.15)
d

ds
(f ◦ ϕs) = Xkf(ϕs), ϕ0 = x ∀f ∈ C∞.

In fact, to use (2.14), one must solve (2.15) for k = 0, ..., d and f = χi, i =
1, ..., d. Kunita also goes beyond commutability, even surpassing Yamato (1979)
in generality by considering the situation where L0(X0, ...,Xd) is only solvable, but
the expression replacing (2.14) necessarily becomes more unwieldy.

Our characterization of φ provided by Theorem 2 provides an alternative to
(2.14) that is much more amenable to direct calculation. Corollary 1 (to follow)
supplies a converse to (2.14) in the sense that if Xx0

t were to have such a functional
representation φx0(t,Wt) in terms of Brownian motions only, then the vector fields
must commute. This was previously established in Theorem 4.1 of Yamato (1979)
under C∞ conditions on both φ and the coefficients. Moreover, the other advantages
of our representations over Kunita’s results are:

• We allow time dependent vector fields.
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• We decrease the regularity assumptions by imposing weaker differentiability
on h and on σ when r is small. The looser regularity on the coefficients
requires eschewing Fisk-Stratonovich equations in favour of Itô processes.

• We remove the nilpotency assumptions (for our representations).
To validate the final claim, we take p = 2, d = 1, X0 = {θ1(x2)−B(x2)x1}∂x1 +

θ2(x2)∂x2 , and X1 = ∂x1 . Then [X0,X1] = B∂x1 . Moreover, if Xk = [X0,Xk−1],
k ≥ 2, then Xk = ak(x2)∂x1 , where ak+1 = θ2(∂x2ak) + Bak, k ≥ 1, where a1 = 1.
In general, the ak’s will not vanish and thereby the Lie algebra contains an infinite
number of linearly independent vector fields. This algebra is solvable but is not
nilpotent.

Using Theorem 1, we can also give the converse to Kunita’s result, Example
III.3.5 in Kunita (1984), that is valid under the mild regularity on b, σ, h given at
the beginning of the section.

Corollary 1. Suppose that there is a domain D̃ such that the coefficients σ and
h are time-homogeneous and Fisk-Stratonovich acceptable on D̃T = D̃× (0, T ) and
that the solution to the Fisk-Stratonovich equation (2.13) has a unique local solution

(Xx0
t )i = Exp (tX0) ◦ Exp

(
W 1

t X1

)
◦ · · · ◦ Exp

(
W d

t Xd

)
◦ χi(x)

on 0 ≤ t < τx for some positive stopping time τx and each x ∈ D̃, where Xk,
k = 0, 1, . . . , d are the vector fields defined immediately following (2.13). Then,

[Xk,Xj ] = 0 on D̃ for each j, k = 0, . . . , d.

Proof. We find that Xx0
t = φ(t, Yt) with U(t) = I so it follows from Theorem 1

that σA = 0. The condition [Xk,Xj ] = 0 then follows from (2.4,2.5). �

3. Examples of applications

3.1. The square case. Suppose that σ = σ(x, t) is a d × d non singular contin-
uously differentiable matrix satisfying (2.4). It follows from Theorem 2 that there
exists a local diffeomorphism Λt such that ∇xΛt = [σ(x, t)]−1, and all explicit solu-
tions are of the form φ(t, y) = Λ−1

t

(
c(t) +Q−1(t)y

)
, where Q(t) =

∫ t

0
Q(s)B(s)ds+

I and c(t) = Q−1(t)
{

Λ0(x) +
∫ t

0
Q(s)θ(s)ds

}
for some θ ∈ C([0, T ); Rd), and some

B ∈ C1([0, T ),Rd×d). In this case, the corresponding diffusion drift b is given by

bt(x) = σ(x, t)× {θ(t)−B(t)Λt(x)− ∂tΛt}+
1
2

d∑
j=1

(∇xσj(x, t))σj(x, t).

In particular, if d = 1 and x0 ∈ R, then Λt(x) =
∫ x

x0

1
σ(y,t)dy is one solution.

If σ does not depend on t, then Λ need not either, both θ and B are constant,
Q(t) = etB , b is given by

b(x) = σ(x)× {θ −BΛ(x)}+
1
2

d∑
j=1

(∇σj(x))σj(x),

and φ(t, y) = Λ−1
(
c(t) +Q−1(t)y

)
.
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Example 1. For example, take σij(x, t) = xiγij(t) and D = (0,∞)d. Then σ
satisfies condition (2.4) since [(∇xσj)σk]i = xiγijγik, and the diffeomorphism can

be chosen as Λt(x) = γ−1
t

 log x1

...
log xd

. Note that the image is Rd, so Λ−1
t =

 e
(γtx)1

...
e(γtx)d


is defined everywhere. In this case, for 1 ≤ i ≤ d,

bi(x, t) = xi

1
2
[γtγ

>
t ]ii + [γ(t)θ(t)]i −

d∑
j=1

(
[γtBtγ

−1
t ]ij − [γ̇tγ

−1
t ]ij

)
log xj

 ,

and φi(t, y) = exp
[
γt{c(t) +Q−1(t)y}

]
i
, where Q(t) is the (fundamental matrix)

solution to Q̇(t) = Q(t)B(t), B(0) = I, and c(t) = Q−1(t)
{

Λ0(x) +
∫ t

0
Q(s)θ(s)ds

}
.

Note also that bi(x, t) can also be written as xi

{
αi(t)−

∑d
j=1 βij(t) log xj

}
, where

αi(t) = 1
2 [γtγ

>
t ]ii + [γ(t)θ(t)]i, 1 ≤ i ≤ d, and Bt = γ−1

t βtγt − γ−1
t γ̇t.

Example 2. Another example is provided by the so-called linear case where σ
depends only on t. In that case, Λt = [σ(t)]−1x satisfies the conditions, Λ−1

t =
σ(t)x, b is given by

b(x, t) = σ(t)×
{
θ(t)−B(t)[σ(t)]−1x+ [σ(t)]−1σ̇(t)[σ(t)]−1

}
,

and φ(t, y) = σ(t) ×
{
c(t) +Q−1(t)y

}
, where Q(t) = exp

{∫ t

0
B(s)ds

}
, and c(t) =

Q−1(t)
{

[σ(0)]−1(x) +
∫ t

0
Q(s)θ(s)ds

}
. Therefore, the stochastic differential equa-

tion dXt = (α(t)−β(t)Xt)dt+σ(t)dWt corresponds to B(t) = [σ(t)]−1β(t)σ(t) and
θ(t) = [σ(t)]−1α(t) + ∂t[σ(t)]−1.

Example 3. Suppose

σ(x1, x2) =

 x1
2

√
2 log x1x2 − (log x1x2)2 − x1

2x2

√
x2(x1 − x2)

x2
2

√
2 log x1x2 − (log x1x2)2 − 1

2

√
x2(x1 − x2)

 ,

on 1 < x1x2 < e, x2 ≤ x1. Then σ satisfies condition (2.4), and Λ(x1, x2) =[
π
2 + arcsin(log x1x2 − 1)

π
2 + arcsin( 2x2

x1
− 1)

]
satisfies (∇Λ)σ = I2. It follows that

Λ−1(x1, x2) =

[
21/2 exp{(1− cosx1)/2}

/
(1− cosx2)

exp{(1− cosx1)/2}((1− cosx2)/2)1/2

]
, (x1, x2) ∈ (0, π)2,

and

(∇σ1)σ1 + (∇σ2)σ2 =
1
4

[
x1(2x1+x2−x2(log x1x2)

2)
x2

x2(1− (log x1x2)2)

]
.
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3.2. Heisenberg group. Let A = A(t) be a continuously differentiable Rd×d ma-

trix and set σ(x, t) = σ(y, z, t) =
[

Id
(Ay)>

]
, where y ∈ Rd, z is real, and t ≥ 0.

Then σ has rank d and ∇xσj =
(

0 0
(A>)j 0

)
. Hence

(∇xσj)σk − (∇xσk)σj =
[

0
Ajk −Akj

]
.

Therefore condition (2.4) holds true if and only if A is symmetric. In that case,

using Theorem 2, one diffeomorphism Λ̃(y, z, t) =
[

Λ(y, z, t)
t

]
is found by setting

Λ(y, z, t) =
[
y
g

]
, where g(y, z, t) = z − 1

2y
>A(t)y.

Since (∇σj)σj =
[

0
Ajj

]
, it follows that

1
2

d∑
j=1

(∇σj)σj =
1
2

[
0

Tr(A)

]
. Next,

∂tΛ = − 1
2

[
0

y>Ȧy

]
, [∇xΛ]−1 =

(
Id 0

(Ay)> 1

)
. Using Theorem 2, b must be of

the form

b(y, z, t) =
[

θ1(g, t)−B(g, t)y
θ2(g, t) + θ1(g, t)>A(t)y − 1

2y
>Ȧ(t)y − y>A(t)>Bt ◦ gy + 1

2Tr{A(t)}

]
,

where B ∈ Rd×d, θ1 ∈ Rd and θ2 ∈ R all depend on (z, t) and are continuously
differentiable. Moreover, the corresponding φ is given by

φ(t, y) =
[

c1(t) +Q−1(t)y
c2(t) + 1

2{c1(t) +Q−1(t)y}>A(t){c1(t) +Q−1(t)y}

]
,

where ċ2 = θ2(c2, t), c2(0) = g(y, z, 0) = z − 1
2y
>A(0)y, R(t) = Bt ◦ c2(t), Q solves

Q̇ = Q(t)R(t), Q(0) = Id, and

c1(t) = Q−1(t)
{
y +

∫ t

0

Q(s)θ1(c2(s), s)ds
}
.

Finally, Ỹt = Yt =
∫ t

0
Q(s)dWs.

The interesting case of skew-symmetric matrices A (e.g. Rémillard, 1994) is not

covered as expected since the solution toXt =
∫ t

0
σ(Xs)dWs =

[
Wt∫ t

0
{A(s)Ws}>dWs

]
has one component that is an iterated stochastic integral. In the case At = A does
not depend on time, the process Xt is known as the Brownian motion on the
Heisenberg group, where the group operation is defined on Rd+2 × Rd+2 by

(y, z, t) ◦ (y′, z′, t′) = (y + y′, z + z′ +
1
2
< Ay, y′ >, t+ t′).

Note that the group is commutative if and only if A is symmetric.
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4. Proofs of the main results

4.1. Proof of Theorem 1 and Corollary 1.

Proof. Using Itô’s formula for Xt = φ(t, Yt), one finds that for any 1 ≤ i ≤ p,

d(Xt)i =

∂tφi(t, Yt) +
1
2

d∑
j=1

d∑
k=1

∂yj
∂yk

φi(t, Yt)(U(t)U>(t))jk

 dt
+

d∑
m=1

d∑
j=1

∂ym
φi(t, Yt)Umj(t)dW

j
t .

Since continuous finite variation martingales are necessarily constant, the (contin-
uous) coefficients of the Itô process φ(t, Yt) match those of (2.3) on (s, τx0,s) if and
only if there is a neighbourhood Nx0,s of 0 such that

σij(φ, t) =
d∑

m=1

∂ym
φi Umj(t), 1 ≤ i ≤ p, 1 ≤ j ≤ d,

or in matrix form
σ(φ, t) = {∇yφ}U(t),

for all t ∈ (s, τx0,s), y ∈ Nx0,s proving (2.7), and

(4.1) bi(φ, t) = ∂tφi +
1
2

d∑
j=1

d∑
k=1

∂yj
∂yk

φi (U(t)U>(t))jk, 1 ≤ i ≤ p.

Now, using (2.7), one obtains

∂ym
{σij(φ, t)} =

p∑
l=1

{∂xl
σij}(φ, t)∂ym

φl =
d∑

l=1

∂ym
∂yl
φi Ulj(t).

Multiplying the last equality by Umk, summing over m and using (2.7) again, one
finds that

(4.2)
p∑

l=1

{∂xl
σij}(φ, t)σlk(φ, t) =

d∑
m=1

d∑
l=1

∂ym
∂yl
φi Ulj(t)Umk(t),

and, taking j = k and summing over j, one has that
d∑

j=1

{∇xσj}(φ, t)σj(φ, t) =
d∑

l=1

d∑
m=1

(U(t)U>(t))lm∂ym
∂yl
φ.

Hence under (2.7), (4.1) is equivalent to

(4.3) ∂tφ = b(φ, t)− 1
2

d∑
k=1

{∇xσk}(φ, t) σk(φ, t) = h(φ, t),

using (2.1). This proves (2.8).
Next, it follows by [A2] that there is a unique continuous solution on [s, t0]

for some t0 = t0(x0, s) > s to ∂tφ(t, 0) = h(φ(t, 0), t) such that φ(s, 0) = x0.
Therefore, existence of our function φx0,s follows from exactness of differential 1-
forms, (2.7), and (4.3) if we can show that under (2.4), ∂yj

{σ(φ, t)(U−1(t))k} =
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∂yk
{σ(φ, t)(U−1(t))j} and d

dt{σ(φ, t)(U−1(t))k} = ∂yk
h(φ, t). However, it follows

by (2.7) and (2.4) that

∂yj{σ(φ, t)(U−1(t))k} =
∑
m

∇φσm(φ, t)σ(φ, t)(U−1(t))j(U−1(t))mk(4.4)

=
∑

n

∇φσn(φ, t)σ(φ, t)(U−1(t))k(U−1(t))nj

= ∂yk
{σ(φ, t)(U−1(t))j}.

Conversely, since the righthand side of (4.2) is symmetric is j and k, it follows that
for all 1 ≤ j, k ≤ d,

{∇φσj}(φ, t)σk(φ, t)− {∇φσk}(φ, t)σj(φ, t) = 0.

Since φx0(s, 0) = x0, (2.4) must hold when our representation does. Next, turning
to the necessity of (2.5,2.6), one gets by (2.7) and (2.8) that
d

dt
{σj(φ, t)} = {∇φσj}(φ, t)∂tφ+ ∂tσj(φ, t) = {∇φσj}(φ, t)h(φ, t) + ∂tσj(φ, t),

and
d

dt
{σj(φ, t)} = {∇y(∂tφ)}Uj(t) + {∇yφ}U̇j(t)

= {∇φh}(φ, t)∇yφUj(t) + {∇yφ}U̇j(t)

= {∇φh}(φ, t)σj(φ, t) + {∇yφ}U̇j(t).

Hence

{∇φσj}(φ, t)h(φ, t)− {∇φh}(φ, t)σj(φ) = {∇yφ}U̇j(t)− ∂tσj(φ, t).

Putting (t, y) = (s, 0), using the identity σ(x, s) = limt↘s∇yφ
s,x(t, 0) (from U(s) =

Id and (2.7)), one obtains (2.5), that is

{∇xσj}h− {∇xh}σj = (σA)j − ∂tσj on DT , for all 1 ≤ j ≤ d,

where A(s, x) = U̇s,x(s). Finally, using the last two identities as well as (2.7), and
recalling the fact that U has an inverse for t < τ0

x0,s, one gets (2.6), that is

σ(φ, t){A(φ, t)− U−1(t)U̇(t)} = 0.

Conversely, using (2.5) and (2.6), we get that
d

dt
{σ(φ, t)(U−1(t))k} = ∇φ{σ(φ, t)(U−1(t))k}∂tφ+ {∂tσ(φ, t)}(U−1(t))k

+σ(φ, t) ˙(U−1(t))k

=
∑

n

{∇φσn(φ, t)}h(φ, t)(U−1(t)nk + {∂tσ(φ, t)}(U−1(t))k

−σ(φ, t)(A(φ, t)U−1(t))k

= {∇φh(φ, t)}σ(φ, t)(U−1(t))k

= ∂yk
h(φ, t)

so by (4.4) and the previous equations (2.4), (2.5), and (2.6) are also sufficient. �

Proof of Corollary 1. The corollary follows directly from Theorem 1, (2.4) and (2.5)
by noting that having a function of Brownian motion W corresponds to taking
U(t) = Id in our representations. �
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4.2. Proof of Theorem 2 in the time-independent case. To prove Theorem
2, we change coordinates using a local time-dependent diffeomorphism. In this
new coordinate system, the problem of representing Zt = Λt(Xt) as φ̃(t, Yt) =
Λt ◦ φ(t, Yt) is much simpler. The existence of such a diffeomorphism follows from
results in differential geometry given in the appendix. We will first prove all the
results for diffusion coefficients b and σ not depending on time.

Proof of Theorem 2. We show that if, Xx0
t = φx0(t, Yt) is a solution of the stochas-

tic differential equation dXt = b(Xt)dt+σ(Xt)dWt, X0 = x0 up to τx0 , then, there
exists (Λ̃, κ,B, θ) ∈ P = Pr,p,σ,DT

such that b = b(Λ,κ,B,θ), and φ = φ(Λ,κ,B,θ).

By Theorem 1, (2.4), and Proposition 2 in the appendix there exist x0-local
diffeomorphism (O,Λ) and κ satisfying P1), P2) and P3). In particular,

σ̃ = {(∇xΛ)σ} ◦ Λ−1 =
(
Ir κ
0 0

)
∈ Rp×d on D = Λ(O),

where κ ∈ Rr×(d−r) does not depend on x1, . . . , xr. If h is the the function defined
by (2.1), set h̃ = {(∇xΛ)h} ◦Λ−1. Then, it follows from Lemma 1 in the appendix
that σ̃ satisfies (2.4), rank(σ̃) = r and (σ̃, h̃) satisfies (2.5). One finds that Zt =
Λ(Xt) is the unique local solution to dZt = b̃(Zt)dt+ σ̃(Zt)dWt, Z0 = Λ(x0), where

b̃ = h̃+
1
2

d∑
j=1

(∇zσ̃j)σ̃j .

MoreoverXt has representation φ(t, Yt) if and only if Zt has representation φ̃(t, Yt) =
Λ◦φ(t, Yt). Therefore, one only has to prove that there exists B and θ satisfying P4)

and P5), such that h̃(u, v) = θ(v)−
[
B(v)u

0

]
, and φ(t, y) = c(t)+

[
Q−1(t)G(0)y

0

]
,

where z =
[
u
v

]
∈ D, u ∈ Rr, and c, Q, R, and G satisfy (2.9). Thus, until stated

otherwise, we set σ =
(
Ir κ
0 0

)
∈ Rp×d, omitting the tilde.

It follows from Theorem 1 that φ satisfies (2.7), that is ∇yφ = σ(φ)U−1. Then,
φ must be of the form

φ(t, y) = c(t) +
(
Ir κ ◦ c2(t)
0 0

)
U−1(t)y =

[
c1(t) +G(t)U−1(t)y

c2(t)

]
,

for some c =
[
c1
c2

]
∈ C1(D; Rp), c2 ∈ Rp−r, c(0) = Λ(x0), andG(t) =

(
Ir

∣∣∣ κ ◦ c2(t)).

Also, σ ◦ φ(t, y) =
(
Ir κ ◦ c2(t)
0 0

)
=

[
G(t)

0

]
. Set B̃ =

(
B

∣∣∣ B̄)
=

(
Ir

∣∣∣ κ)A,

where B ∈ Rr×r. It follows from (2.6) that B̃(φ) = GU−1U̇ . Since the right
hand-side does not depend on y, one obtains

0 = ∇y{B̃j ◦ φ}U = {∇B̃j}(φ)(∇yφ)U = {∇B̃j}(φ)σ(φ) = (∇B̃j)(φ)
[
G
0

]
,

for any 1 ≤ j ≤ d. Then, putting (t, y) = (0, 0) in the last equation, one obtains

0 =
(
∇uB̃j

∣∣∣ ∇vB̃j

) (
Ir κ
0 0

)
,
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which entails that B̃ does not depend on u. Setting R̃ = B̃ ◦ c2, and R = B ◦ c2,
we write (2.6) as

(4.5) R̃V +GV̇ = 0,

where V = U−1. Recall from Theorem 1 that h must solve

(∇σj)h− (∇h)σj = σAj =
[
B̃j

0

]
, 1 ≤ j ≤ d.

In particular, from 1 ≤ j ≤ r, one finds that

h(z) = h(u, v) = θ(v)−
[
B(v)u

0

]
,

for some θ ∈ C1(D; Rp) depending on v only. Next, taking into account the indices

j+ r, 1 ≤ j ≤ d− r, one also has (∇h)σj+r = −
[
Bκj

0

]
, where κj denotes the j-th

column of κ. Therefore[
B̃j+r

0

]
=

[
B̄j

0

]
= (∇σj+r)h− (∇h)σj+r =

[
(∇vκj)θ2

0

]
+

[
Bκj

0

]
.

Thus

(4.6) B̄j = (∇vκj)θ2 +Bκj , for all 1 ≤ j ≤ d− r.

Since h◦φ(t, y) = θ◦c2(t)−
[
R(t){c1(t) +G(t)V (t)y}

0

]
, the condition ∂tφ = h(φ)

of Theorem 1 yields ċ2 = θ2(c2) and

ċ1 + ĠV y +GV̇ y = θ1(c2(t))−R(t){c1(t) +G(t)V (t)y}.

Therefore, c2 is the unique solution of ċ2 = θ2(c2), c2(0) = Λ(2)(x0). One can
now rewrite (4.6) as R̃ = Ġ + RG. This equation, together with (4.5) implies
∂t(GV )+R(GV ) = 0, which can be written as ∂t(QGV ) = 0, where Q is the unique
solution of Q̇ = QR, Q(0) = Ir. Therefore, Q(t)G(t)U−1(t) = G(0), G(t)U−1(t) =
Q−1(t)G(0), and Q(t)G(t) = G(0)U(t). Hence, one can conclude that

φ(t, y) = c(t) +
[
Q−1(t)G(0)y

0

]
.

Since ∂t(GV ) +R(GV ) = 0, one obtains ċ1 = θ1(c2(t))−R(t)c1(t). Therefore

c1(t) = Q−1(t)
{

Λ(1)(x0) +
∫ t

0

Q(s)θ1 ◦ c2(s)ds
}
.

Finally, we show that any two pairs (Λ, κ) and (Λ̄, κ̄) satisfying P1), P2) and
P3) generate the same class of solutions. More precisely, if (Λ̃, κ,B, θ) ∈ P, there
exists ((Λ̄ t)T , κ̄, B̄, θ̄) ∈ P such that h = h(Λ,κ,B,θ) = h̄(Λ̄,κ̄,B̄,θ̄) = h̄, on Ox0 ∩ Ōx0

and φ = φ(Λ,κ,B,θ) = φ̄(Λ̄,κ̄,B̄,θ̄) = φ̄ on a neighbourhood of (0, 0).

Λ̂ = Λ̄ ◦ Λ−1 is a local diffeomorphism on D such that ∇Λ̂
(
Ir κ
0 0

)
◦ Λ̂−1 =(

Ir κ̄
0 0

)
so Λ̄ ◦ Λ−1(u, v) =

[
u+ ψ1(v)
ψ2(v)

]
, where ψ2 is a diffeomorphism on a

subset of Rd−r and κ = κ̄ ◦ ψ2. Therefore Λ̄−1(ū, v̄) = Λ−1

([
ū− ψ1 ◦ ψ−1

2 (v̄)
ψ−1

2 (v)

])
.
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Moreover Λ̄ =
[

Λ(1) + ψ1 ◦ Λ(2)

ψ2 ◦ Λ(2)

]
. Suppose that θ and B are fixed and let c, G, R,

and Q be the associated functions, as defined by (2.9). Set θ̄2 = {(∇vψ2)θ2} ◦ ψ−1
2

and B̄ = B ◦ψ−1
2 . Then c̄2 = ψ2 ◦ c2 solves ˙̄c2 = θ̄2(c̄2), c̄2(0) = Λ̄(2)(x0). Moreover

Ḡ =
(
Ir

∣∣∣ κ̄ ◦ c̄2) =
(
Ir

∣∣∣ κ ◦ c2) = G(t), R̄ = B̄ ◦ c̄2 = B ◦c2 = R and Q̄ = Q, where

Q̄ solves ˙̄Q = Q̄R̄, Q̄(0) = Ir. Finally, we set θ̄1 = {(∇vψ1)θ2 + Bψ1 + θ1} ◦ ψ−1
2 .

Then

c̄1(t) = (Q̄)−1(t)
{

(Λ̄)(1)(x0) +
∫ t

0

Q̄(s)θ̄1 ◦ c̄2(s)ds
}

= Q−1(t)
{

Λ(1)(x0) + ψ1 ◦ Λ(2)(x0) +
∫ t

0

Q(s)θ1 ◦ c2(s)ds
}

+Q−1(t)
∫ t

0

Q(s){R(s)ψ1 ◦ c2(s) + (∇vψ1) ◦ c2(s)θ2 ◦ c2(s)}ds

= c1(t) + ψ1 ◦ c2(t).

Hence

φ̄(t, y) = (Λ̄)−1

(
c̄(t) +

[
(Q̄)−1(t)Ḡ(0)y

0

])
= (Λ̄)−1

([
c1(t) + ψ1 ◦ c2(t) +Q−1(t)G(0)y

ψ2 ◦ c2(t)

])
= (Λ)−1

([
c1(t) +Q−1(t)G(0)y

c2(t)

])
= φ(t, y).

It is also easy to check that

h̄(u, v) = (∇Λ̄)−1 ×
{
θ̄ −

[
B̄(v)u

0

]}
= (∇Λ)−1 ×

{
θ −

[
B(v)u

0

]}
= h(u, v).

This completes the proof. �

4.3. Proof of Theorem 2 in the time-dependent case. By considering time
as supplemental variable xp+1, one can prove Theorem 2 when σ and b depend on
time as a by-product of the time-independent case.

Proof. We first note that by hypotheses there is a unique strong solution to

dX̃t = b̃(X̃t)dt+ σ̃(X̃t)dWt, X̃s =
[
x0

s

]
up to τx0,s > 0 for all

[
x
s

]
∈ DT , where time is treated as xp+1, X̃t ∈ Rp+1,

σ̃ =
[
σ
0

]
for t ≥ 0, and h̃, b̃ =

[
h
1

]
,

[
b
1

]
for t ≥ 0. Moreover, σ̃, b̃, h̃ satisfy C1,

∂r, Hr. Therefore, using the Theorem 2 in the time-independent setting as well as
Proposition 2 in the appendix, one can conclude that there exists a (Λ̃, κ,B, θ̃) ∈

P = Pr,p+1,σ̃ such that Λ̃ =
[

Λt

t

]
satisfies {(∇Λ̃)σ̃} ◦ (Λ̃)−1 =

(
Ir κ
0 0

)
on some

relatively open neighbourhood O of (x0, 0), and h̃ = h̃(Λ,κ,B,θ̃), and φ̃ = φ̃(Λ,κ,B,θ̃),
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where c̃ =
[
c
c3

]
, G̃, R̃, Q̃ are defined according to (2.9). It remains to prove the

general expression for h, φ and to show θ̃ =
[
θ
1

]
.

Since∇Λ̃ =
(
∇xΛ ∂tΛ

0 1

)
, it follows that [∇Λ̃]−1 =

(
[∇xΛ]−1 −[∇xΛ]−1∂tΛ

0 1

)
.

Thus h̃ can be written in the form

h̃(x, t) =
[
ht

h′t

]

= [∇Λ̃]−1 ×

θ̃t ◦ Λ(2) −

[
(Bt ◦ Λ(2))Λ(1)

0

]
0


=

[
[∇xΛ]−1 ×

[
{θ − (∂tΛ)θ3} ◦ (Λ(2), t)

]
θ3 ◦ (Λ(2), t)

]

−[∇xΛ]−1 ×

[
(Bt ◦ Λ(2))Λ(1)

0

]
0

 ,
where θ̃ =

[
θ
θ3

]
=

 θ1θ2
θ3

 ∈ Rp+1, θ3 ∈ R. Hence, solutions of the form h̃ =
[
h
1

]
are only possible when θ3 = 1. In this case, one has c3(t) = t, so ċ2 = θ2(c2, t),

c2(0) = Λ(2)

([
x0

0

])
and, consequently h and φ clearly have representation

h(x, t) = [∇xΛ]−1 ×
{
θt ◦ Λ(2) − ∂tΛ−

[
(Bt ◦ Λ(2))Λ(1)

0

]}
,

and

φ(t, y) = φ(Λ,κ,B,θ)(t, y) = Λ−1
t

(
c(t) +

[
Q−1(t)G(0)y

0

])
,

as stated in Theorem 2. �

5. Appendix: Local Diffeomorphisms

We fix r ∈ {1, 2, ...}, set r̄ = r + 1, take q = p + 1 if σ or b depend on t or
q = p otherwise and assume in this appendix that σ ∈ Cr̄(DT ; Rq×d) satisfies Hr

and σp+1 = 0 if q > p. Next, we let D2
T =

{
D × (−T, T ) if σ or b depend on t
D otherwise ,

fix x̄ ∈ DT , set ∂tσ(x, t) = ∂tσ(x, 0), ∂xiσ(x, t) = ∂xiσ(x, 0) for t < 0, i = 1, 2, ..., q
and use exactness of the corresponding 1-form to extend σ uniquely to D2

T such
that σ ∈ Cr̄(D2

T ; Rq×d). By making T > 0 smaller if necessary, we can assume that
the first r columns of σ are linearly independent on D2

T .

The following lemma can be proven by elementary calculations.

Lemma 1. Suppose that the mappings α1, α2 and α3 from a domain O ⊂ Rq

to Rq are differentiable and satisfy (∇α1)α2 − (∇α2)α1 = α3. Let Λ be a C2-
diffeomorphism on O and set α̃i = {(∇Λ)αi} ◦ Λ−1, i = 1, 2, 3. Then (∇α̃1)α̃2 −
(∇α̃2)α̃1 = α̃3 on the domain Λ(O).
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The following two results are motivated from differential geometry, e.g. Brickell
and Clark (1970), Propositions 8.3.2 and 11.5.2. Their full proofs are included
because they illustrate how to construct the diffeomorphisms needed in applications.
Below the phrase maximal solution means the unique local solution that lasts until
the solution leaves ∆ or time infinity.

Proposition 1. Suppose ∆ ⊂ Rp is open and σ-compact, and α ∈ Cr̄(∆; Rq \{0}).
Then, for any δ ∈ {1, ..., q} and x̄ ∈ ∆ such that αδ(x̄) 6= 0, there exists a x̄-
local diffeomorphism (Ox̄,Λδ) such that Λδ ∈ Cr̄(Ox̄; Rq) and {∇Λδ}α = eδ on Ox̄,

where e>δ = (0, . . . , 0, 1, 0, . . . , 0). If q > 1 and αq ≡ 0, then Λδ(x) =
[
Λ̂(x)
xq

]
,

where (x1, . . . , xq−1)T → Λ̂(x) is a local diffeomorphism for each xq. Moreover,
when D ⊂ ∆, x̄ ∈ D, and α

∣∣
D

only depends on (xδ, ..., xp) we have that

Λδ(x) =
δ−1∑
i=1

xiei +
[
M(xδ, ..., xp)
L(xδ, ..., xp)

]
, M(xδ, ..., xp) ∈ Rδ−1,

for the x ∈ D such that ẏ = α(y), y(0) = (x1, ..., xδ−1, x̄δ, xδ+1, ..., xq) stays in D
for t between 0 and xδ − x̄δ.

Proof. We let θ(t, x) be the maximal solution of ẏ = α(y), y(0) = x and set
ψ(x) = θ(xδ− x̄δ, x1, . . . , xδ−1, x̄δ, xδ+1, . . . , xp) for the x such that it is well defined
so ∂xδ

ψ = α(ψ). Next,

ψ(x1, . . . , xδ−1, x̄δ, xδ+1, . . . , xp) = (0, x1, . . . , xδ−1, x̄δ, xδ+1, . . . , xp)>,

so ∇ψ(x̄) has determinant αδ(x̄) 6= 0. Therefore, applying the Inverse Function
Theorem, one obtains that ψ has a inverse Λδ ∈ Cr̄(Ox̄,Rq), where Ox̄ is a neigh-
borhood of x̄. Therefore ∇Λδ = [∇ψ]−1(Λδ) on Ox̄. Hence, (∇Λ)α = eδ on Ox̄

since {∂xδ
ψ}(Λ) = α(ψ ◦ Λ) = α so clearly ∇Λα(x) = eδ when xδ = x̄δ and it is

easy to show that ∂xδ
(∇Λα) = 0 on Ox̄. The final claims follow easily from the

fact ψ will have the form ψ(x) = (ψ̂(x1, ..., xq−1, xq), xq) when αq = 0 and the form

ψ(x) =
[
(x1 . . . xδ−1)> + f(xδ, xδ+1, ..., xq)

g(xδ, xδ+1, ..., xq)

]
when α does not depend on x1, ..., xδ−1. �

In the previous proposition the σ-compact condition was for convenience. It
can always be satisfied by making open O smaller if necessary. In the following
proposition, the diffeomorphism domains are open subsets of D2

T . These domains
are restricted by intersecting them with DT in the proof of Theorem 2.

Proposition 2. Suppose (∇σj)σk − (∇σk)σj = 0 on DT , for 1 ≤ j, k ≤ d. Then,
there exists a x̄-local diffeomorphism (Ox̄,Λ) such that

{(∇Λ)σ} ◦ Λ−1 =
(
Ir κ
0 0

)
∈ Rq×d on Λ(Ox̄ ∩DT ),

where κ ∈ C1(Λ(Ox̄ ∩ DT ); Rr×(d−r)) does not depend on x1, . . . , xr and Λ ∈
C2(Ox̄; Rq). In particular, κ is constant if r = q. If q > r and the qth row of
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σ is zero, then Λ =
[
Λ̂(x)
xq

]
, where (x1, . . . , xq−1)T → Λ̂(x) is a diffeomorphism for

each xq.

Proof. Suppose there is a x̄-local diffeomorphism Λ1 ∈ Cr+3−δ(O1; Rq) such that
{(∇Λ1)σ}◦Λ−1

1 =
(
e1

∣∣∣ · · · ∣∣∣ eδ−1

∣∣∣ sδ
)

on Λ1(O1∩DT ) for some sδ ∈ Cr+2−δ(Λ1(O1)).
This is true for δ = 2 by Proposition 1 and we proceed by induction. By Lemma 1,

(∇sδ
j)ei = (∇sδ

j)ei − (∇ei)sδ
j = (∇σj)σi − (∇σi)σj = 0

for all 1 ≤ i < δ ≤ j on Λ1(O1 ∩DT ), and each sδ
j

∣∣
DT

depends only on xδ, . . . , xq.
However, if yδ is a local solution to ẏ = σδ(y), y(0) = x in O1, then zδ = Λ1(yδ)
is a local solution to żδ(t) = sδ

δ(z
δ(t)), zδ(0) = Λ1(x) in Λ1(O1) that stays in

Λ1(O1 ∩DT ) if started there. Hence, by Proposition 1, we find a (r + 2− δ)-times
continuously differentiable Λ1(x̄)-local diffeomorphism (Oδ,Λδ) that takes the form

Λδ(x) =
δ−1∑
i=1

xiei+
[
M(xδ, . . . , xq)
L(xδ, . . . , xq)

]
on Λ1(O1∩DT )∩Oδ and satisfies (∇Λδ)sδ

δ = eδ

on Oδ. Hence, (O = O1 ∩ Λ−1
1 (Oδ),Λ = Λδ ◦ Λ1) is a x̄-local diffeomorphism such

that (∇Λ)σ ◦Λ−1 =
(
e1

∣∣∣ · · · ∣∣∣ eδ−1

∣∣∣ sδ
)
◦Λ−1

δ =
(
e1

∣∣∣ · · · ∣∣∣ eδ

∣∣∣ sδ+1
)

on Λ(O ∩DT )

and by a second, identical application of Lemma 1 sδ+1
∣∣
DT

does not depend on
x1, . . . , xδ. The end result of the induction is a x̄-local diffeomorphism (O,Λ) such
that

σ̃ = {(∇Λ)σ} ◦ Λ−1 =
(
Ir κ
0 κ̄

)
∈ Rq×d on Λ(O ∩DT ),

where κ ∈ Rr×(d−r) and κ̄ ∈ R(q−r)×(d−r) do not depend on the variables x1, . . . , xr.
Since σ̃ has also rank r, it follows that κ̄ = 0. �
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