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SUMMARY

This paper combines the idea of preliminary test and ridge regression methodology, when it
is suspected that the regression coefficients may be restricted to a subspace. The preliminary
test ridge regression estimators (PTRRE) based on the Wald (W), Likelihood Ratio (LR)
and Lagrangian Multiplier (LM) tests are considered. The bias and the mean square errors
(MSE) of the proposed estimators are derived under both null and alternative hypotheses.
By studying the M SFE criterion, the regions of optimality of the estimators are determined.
Under the null hypothesis, the PTTRRE based on LM test has the smallest risk followed by
the estimators based on LR and W tests. However, the PI'RRFE based on W test performs
the best followed by the LR and LM based estimators when the parameter moves away
from the subspace of the restrictions. The conditions of superiority of the proposed estima-
tor for both ridge parameter £ and departure parameter A are provided. Some graphical
representations have been presented which support the findings of the paper. Some tables
for maximum and minimum guaranteed relative efficiency of the proposed estimators have
been provided. These tables allow us to determine the optimum level of significance cor-
responding to the optimum estimators among proposed estimators. Finally, we concluded
that the optimum choice of the level of significance becomes the traditional choice by using
the W test for all non-negative ridge parameter, k.
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1 Introduction
Consider the following linear regression model,
Y ~ N(XB,0%I), (1.1)

where Y is an n x 1 vector of observations on the dependent variable, which follow a normal
distribution with fixed mean, X 3 and unknown variance, 021, 3 is an px 1 vector of unknown

parameters, X is an n X p known design matrix of rank p (n > p).

Our primary interest is to estimate the regression coefficient # when it is aprior: suspected
that § may be restricted to the subspace

Hy:HB = h, (1.2)

where H is an ¢ x p known matrix of full rank ¢(< p) and h is an ¢ x 1 vector of known

constants.

The unrestricted (UR) least squares estimator (URLSE) of (3 is given by
pUR =C XY, (1.3)
where C' = X'X matrix. The corresponding MLE of 02 is given by
o (Y = XBURY(Y - X5UR)

o = .
UR n

It is observed from (1.3) that the usual least squares estimator (LSE) of 3 depends heav-
ily on the characteristics of the matrix C'= X'X. If the C' matrix is ill-conditioned (near
dependency among various columns of C'), then the least squares estimator (LSE) pro-
duce unduly large sampling variances. Moreover, some of the regression coefficients may
be statistically insignificant with wrong sign and meaningful statistical inference become
impossible for the researcher. Hoerl and Kennard (1970) found that multicollinearity is a
common problem in the field of engineering. To resolves this problem, they suggested to use
C(k) = X'X + kI,, (k> 0) rather than C' in the estimation of 5. The resulting estima-
tor of 3 are known as the Ridge Regression Estimator (RRE). Hoerl and Kennard (1970)
considered the following Unrestricted Ridge Regression Estimator (URRE),

BUR(R) = (X'X + kL) ' X'y = WA'R, (1.4)

where W = [I, + kC~']"" and k > 0 is the ridge or biasing parameter. The bias and mean
squares error of the URRFE of 3 are

~

Bias(VE(k)) = Byr(k) = E(3"E(k) - ) = —kC™'(k)3 and
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MSEygr(k) = o*tr(WCT'W') + k2B C~%(k)p, (1.5)

respectively. Though these estimators in (1.4) result in biased, for certain value of k, they
yield minimum mean square error (MSE) compared to the ordinary least squares (OLS)

estimator.

In order to reduce the pain of multicollinearity, the very well known restricted least squares
(RLS) method of estimation are useful in practice. The restricted least squares estimator
(RLSE) of 8 and 0? are

BRE — BUR o Clel(Hclel)fl(HBUR - h) and

(Y _ XBRE)'(Y _ XBRE)

n

O =
respectively. Based on the RLSE, Sarkar (1992) proposed the following Restricted Ridge
Regression Estimator (RRRE),

BRE (k) = W3R, (1.6)
The bias and mean squares error of the RRRFE of (3 are, respectively,

Brp(k) = —-Wn—kC (k)3 and

MSErp(k) = o?[tr(WCO'W') —tr(WAW")] + 9 W'Wn
+ 2kfW'CTHR)B + K2 B'CTB, (1.7)

where n=C 'H'(HC™'H')""(HB — h) and A=C'H'(HC™'H')"'HC™".

It is well known that the RRRFE performs better than the U RRE, when the restrictions hold
but as long as the parameters, # moves away from the subspace H3 = h, the RRRFE becomes
biased and completely inefficient while the performance of the U RRE remains stable. As
a result, one may combine the URRE and RRRE to obtain a better performance of the
estimators in presence of the uncertain prior information (UPI) Hf = h, which leads to

preliminary test ridge regression estimator (PTRRFE). Saleh and Kibria (1993) combine the
idea of PITLSE and RRE and define the PI'RRFE as,

BT (k) = wirT, (1.8)

where 3FT = GREI(L < L) 4+ BVRI(L > L) is the usual preliminary test least squares
estimator (PTLSE). Here, L is the general test-statistic for testing the null-hypothesis in
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(1.2), and L, 4 is the upper a-level critical value of £, and I(A) is the indicator function
of the set A. The preliminary test approach estimation has been pioneered by Bancroft
(1944), followed by Bancroft (1964), Mosteller (1948), Han and Bancroft (1968), and Giles
(1991) among others. The ridge regression approach has been studied by Hoerl and Kennard
(1970), McDonald and Galarneau (1975), Golub et al. (1979), Lawless (1978), Gibbons
(1981), Sarkar (1992), Saleh and Kibria (1993) and Kibria (1996) to mention a few.

The main objective of this paper is to provide a finite sample theory of the PI'RRE based
on W, LR and LM tests. We assume a Gaussian linear regression model to estimate the
parameters in the model. We organize this paper as follows. In Section 2 we propose the
preliminary test ridge regression estimators (PTRRFE) based on W, LR and LM tests.
Section 3 contains the bias and the MSE expressions of the estimators. In Section 4 we
discuss the relative performance of the estimators. The computed risk analysis and graphs
are presented in Section 5. The maximum and minimum guaranteed efficiency is discussed

in Section 6. Finally, summary and concluding remarks have been added in Section 7.
2 Proposed Estimators based on W, LR and LM Tests

The usual test statistic for testing the null hypothesis in (1.2) is
5 _ (RRSS —URRE)/q _ (HBUR — b)Y (HC H") *(HBVE — h)
~  URSS/(n—p) egig ,
where URSS = (Y — XBUR)(Y — X[UR) is the unrestricted residual sum of squares and

RRSS = (Y — XBRE) (Y — XJ3RF) is the restricted residual sum of squares. The test-
statistic F' follows a central F-distribution with (¢, n — p) degrees of freedom (DF) under H.

However, when H, does not hold the test statistic F' follows a non-central F' distribution

with non-central parameter %A, where

A HO—W'(HCTH) W(HS—h) _1'Cr (2.9)

o? o?

is called the departure parameter.

The following three tests, W, LR and LM are well employed for testing the hypothesis (1.2)
in Econometric Theory. Wald (1943), first introduce the W test as follows:
HAUR —h i Hclel -1 HAUR
o HBVR W HCH) NP g, 210

~9
OUR n—p

The well known LR test is

c
Lip=n[n62, — 6%, =nln (1 + —W> . (2.11)
n
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Aitchison and Silvey (1958) and Silvey (1959) introduce the LM test as

(HBUE — h)(HCT'H')T'(HBYE —h)  Lw
6% 1+ Ly/n’

Liv = (2.12)
It is observed that Ly and L1y test statistics differ only by different estimates of 0. Also
note that the LA test is the same as the score test of Rao (1947). Savin (1976), and Berndt
and Savin (1977) have shown that the following inequality

Lw > Lir > Lom (2.13)

exists among these three tests. From equations (2.10) to (2.12), we also noticed that Lpr
and L), statistics are function of Ly, and therefore, all the test statistics are monotonic
function of F statistic. Each of the test statistic has a different sampling distribution and
hence the critical values. The PT'RRE defined in term of exact tests at a given significance
level has the same bias and M SE. However, due to the inequality relation among the value
of test statistics, the PTRRFEs based on a fixed critical value may have different biases and

mean squares errors.

The exact sampling distribution of the test statistics is complicated. Therefore, the critical
regions of the tests are commonly based on asymptotic approximations. It can be shown that
under the restrictions (1.2), all tests are asymptotically distributed as y*-random variable
with ¢ degrees of freedom. This asymptotic chi-square distribution has wide application in
the field of Econometrics. The test based on the approximate critical values are known as
large sample tests. We propose the following PT RRE based on W, LR and LM tests, which
are given respectively,

(k) = BRI (Lw < X2 (@) + BRI (Lw > X2 (),
k() = BR)I(Lrr < Xal@) + 8% (K)I(Lrr > Xa(g),  and

Su(k) = BRI (Lo < x5(0) + BRI (Loar > xa(a)), (2.14)

where x2(q) is the upper percentile points of the central y? distribution with ¢ degrees of
freedom. For excellent references and for various researches on W, LR and LM tests, readers
are refereed to Savin (1976), Berndt and Savin (1977), Rao and Mukerjee (1977), Evans and
Savin (1982), Ullah and Zinde-Walsh (1984) and most recently Billah and Saleh (2000)
among others. In the following Section, we will provide the Bias and M SFE expressions of
the proposed estimators.



3 Biases and MSE Expressions

The biases and the MSE expressions of the proposed estimators are routinely followed from
Judge and Bock (1978, Chapter 10), and Saleh and Kibria (1993).

The Biases of the proposed estimators are as follows:

By (k,a, A) = —WnGyiom o173 A) — kC7H(K)B,

BLR(ka «, A) = _WT]GtH»?,nfp(lfR; A) - kcil(k)ﬂa

BLM(ka @, A) = _WUGtH—?,n—p(lfM; A) - kC'_l(k)ﬁ, (3-15)
here (W — _n=p_\2 () JLR — (n=p Xa(@) 1) M — _(np)x2(a) dG A
where 1Y = b (o), 11 = (558) (757 — 1), 1Y = Gttty and Gyoon (5 A) is

the cumulative distribution function (CDF) of a non-central F-distribution with (¢+2,n—p)
degrees of freedom (DF) and non-centrality parameter %A. Note that for a = 1, we reject
the null hypothesis, then the bias of the three estimators coincide with the bias of the
URRE, 3UE(k), however, for a = 0, we do not reject the null hypothesis and the bias of the
proposed estimators coincide with that of the RRRFE, BRE(k). As A — o0, By (k,a,00) =
Brr(k,a,00) = Bry(k,a,00) = Byr(k) = —kC~'(k)3, whereas, the bias of the RRRE
remains unbounded. Since, [IM >[I > [V for all a, p and n, it follows that

GQ+2,nfp(llLM; A) Z Gq+2,nfp(llLR; A) Z Gq+2,nfp(l}/v; A) (3'16)

Now, based on equations (3.15) and (3.16), we may state the following theorem.

Theorem 1: Under the null hypothesis the proposed estimators are biased and the amount
of biases are same. However, under the alternative hypothesis the dominance picture of the
proposed estimators is

(k) = Brn (k) = By (k),
where > denotes the dominance in the sense of having smaller bias. For k = 0, we have the

dominance picture for the corresponding preliminary test least squares estimators (PTLSE)
based on LM, LR and W tests respectively.

The MSE expressions for 857 (k), BFEF (k) and GFL (k) are respectively provided below:
MSEw(k) = o*tr(WC'W') — o*tr(WAW")Gyrom o1V A) +'W'Wn

X [QGquQ,nfp(l}/V; A) - Gq+4,nfp(lgv; A)] + 2qu+2,nfp(l¥V; A)nlwlcil(k)ﬂ
+ EBCT(k)B,



MSEpr(k) = *tr(WC'W') = o?*tr(WAW")G gyom_p (1T A) + /W' Wi
X [2Gq+2,n—p(lfR§ A) - Gq+4,n—p(l£R§ A)] + 2qu+2,n—p(lfR§ A W'CH (k)
+ KFC(k)B,

MSEpy(k) = o*tr(WCW') — o*tr(WAW"G y0m »(IFM; A) + /W' W
X [QGq+2,nfp(l1LM; A) - Gq+4,nfp(l2LM§ A)] + 2qu+2,n—p(l1LM§ A)UIWIC_I(k)ﬂ
+ KB'C2(k)B, (3.17)

2
where I}V = =242 (q), LR = (u) (eXQT(Q) - 1), [EM — PGl gy Goran—p(;A)is

n(g+4) q-+4 (¢+4)(n—xa ()’
the cumulative distribution function (CDF) of a non-central F-distribution with (¢+4,n—p)

degrees of freedom (DF) and non-centrality parameter $A.

4 Performance of the Estimators Under MSE Criteri-
on

In this Section we will compare the performance of the proposed estimators by using M SE
criterion. We note from (3.17) that for given o and known data, the MSFEs depend on
the departure parameter A and ridge parameter k. Therefore, we will study the relative
performance of the estimators based on values of A and k£ and provided them in the following
two subsections.

4.1 Performance based on A

We obtain from Anderson (1984, Theorem A.2.4, p.590) that
!/ !
mTWWn _

’YpSW_’Yh or

o? Ay, < fW'Wn < o* Ay, (4.18)

where v, and 7, are the largest and the smallest characteristic roots of the matrix (W'WC™!)

!
and A = 1L¢1,
(o2

Now we compare between 357 (k) and 3% (k). The MSE difference is:

MSEw (k) — MSEg(k) =
o tr(WAW" ) — g W'Wn[2e) — ¥ — 2ka 2 W'C™ (k) B, (4.19)

where ¥ = Gyion »(IFFA) = Gyion (11 A) and ¢ = Gyran p(1F%A) = G pran (L5 A).
Note from (3.16) that both ¢ and ¢* are positive for all k£, A and «.
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The difference in (4.19) is non-negative (> 0), whenever
A < tr(WAW') — 2ko2nf/W'C (k)
S
Thus, 7L (k) performs better than 57 (k), when (4.20) holds. However, 557 (k) performs
better than SE7(k), whenever

= Ay (K, a). (4.20)

tr(WAW') — 2ko™2fW'C~ (k)3
,‘/}*
(2= %)

Under the null hypothesis, the difference in (4.19) is always positive for all «, therefore,
3T (k) is superior to BT (k). Now we can describe the graph of GFF (k) as follows. At

A =0, it assumes the value,

A >

= Ay(k, ). (4.21)

o*tr(WC W) — a?tr(WAW")Gyyom »(1F%:0) + E26'C2(k) 3,
then increases from 0, crossing the risk of B{;,T(k) to a maximum and then drops gradually
towards MSEyg(k) as A — oo.
Now we compare the performance of 555 (k) with that of 327, (k). The MSE difference is:
o*tr(WAW Yy — ' W'Wi[2¢, — 4f] — 2ko ' W'C (k) By, (4.22)
where ¢1 = Ggion—p(I1"; A) =G ron—p (1™ A) and ¥f = Gyian-p (55 A)=Goian—p(l5™ A).
The difference in (4.22) is non-negative (> 0), whenever
tr(WAW') — 2ko ™20 W'C~ (k)3
n(2-3)
Thus, E7 (k) performs better than 377 (k) when (4.23) holds, otherwise BF% (k) performs
better than SE7 (k), whenever

= Ay(k, ). (4.23)

tr(WAW') — 2ko™2fW'C~ (k)3
vy
% (2-3)

Under the null hypothesis the difference in (4.22) is always positive for all «, therefore,

3T (k) is superior to BFE (k). Now we can describe the graph of SE7.(k) as follows. At

A =0, it assumes a value

A >

= Ay(k, ). (4.24)

a*tr(WC™'W') — o?*tr (W AW")G yrom—p (1M 0) + K2 5'C 2 (k) 3,
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then increases from 0, crossing the risk of SFZ (k) and S5 (k) to a maximum and then drops
gradually towards MSEygr(k) as A — oo.

Based on the above analysis we may state the following theorem:

Theorem 2: Under the null hypothesis the dominance picture of the proposed estimators is:

L (k) = B7R (k) = By (k),
where > denotes the dominance in the sense of having smaller MSFE.

Under the alternative hypothesis, the dominance picture of the proposed estimators is:

3 (k) > BEE (k) > BRF (k),
i the interval
A€ (0, Aj;(k, )],

where A (k, o) = min {A(k, ), As(k,«)}, also Ay(k, ) and As(k,«) are given in (4.20)
and (4.23) respectively, while

in the interval

A S (A;4(k7a)a OO) )

where AL, (k, o) = max {As(k, ), Ay(k, )}, also Ao(k, ) and Ay(k, @) are given in (4.21)
and (4.24) respectively.

4.2 Performance based on k

In this subsection, we will compare the performance of the proposed estimators based on
ridge parameter k. For this, we assume that Q be the orthogonal matrix with eigenvectors
of C' so that

QR'CQ = A = diag(Ai, Aoy ...y Ap).

As C' is symmetric we can write
WAW' = Q[A + kL) "AA*AA + kL] Q' (4.25)

where (Q’AQ = A*. Now without loss of generality we assume that A\ > Xy > ... Ap > 0,

and we can write,

D p )\2 *
tr(WCO™"W") and tr(WAW') _ A% 4.26
( ; i +k) ; i + k)? ( )
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where af; > 0 is the i diagonal element of the matrix A*. Also,

_ P af
,BIC Q(I{I)ﬁ = Z m, where o = QI/B (427)
=1 \""?
P22 - A
UIW,WU = ; m and HIW,C l(k')ﬁ = ; m, (428)

where n* = 1'Q.
Thus, using equations (4.26) to (4.28), the M SE difference in equation (4.19) can be ex-
pressed in terms of the eigen values as

P
MSEw (k) = MSEpr(k) =Y~ o + k [021/)@;% — (2 = ") n? - 2@074777;%] - (4.29)
1—1
The difference in (4.29) will be non-negative (> 0) if
_ ming [o*Yaihi — (29 — ) A?]
- ma; 24 o)

= ki (o, A). (4.30)

Thus, 3F% (k) will dominate 5T (k) if 0 < k < ki (o, A), while S5 (k) will dominate SE% (k)

whenever

maz; [o*pai N — (24 — ) Ay’
min;[29n; a;]

k> = koo, A). (4.31)

Now we compare between 37T (k) and BT (k) estimators. Using equations (4.26) to (4.28),
the MSE difference in equation (4.22) can be expressed in terms of the eigen values as

p

MSEpp(k) — MSE
LR() LM ; )\ —|—k)

The difference in (4.32) will be non-negative (> 0) if

[ 2hrai\i — (20 — i) Nnt? — lekmf‘ai} (4.32)

_ min; [Uleafi)\i — (2¢1 — T/JT)AWZZ*]
- max;[ 2y} o)

= ks(a, A). (4.33)

Thus, BFT (k) will dominate BE% (k) if 0 < k < ks(cv, A), while 2% (k) will dominate 557 (k)
when

2 * * *2
max; [U YraiAi — (201 — 1) Aim; ]

k >
min;[ 2y a;)

= ky(a, A). (4.34)
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Based on the above results, we may state the following theorem:.

Theorem 3: Under the alternative hypothesis, the dominance picture of the proposed estima-
tors is:

3 (k) > Bk (k) > BT (k),
in the interval

ke (0, kiz(a, A)],

where kyz(co, A) = min {ki(a, A), ks(a, A)}, also ki(a, A) and ks(o, A) are given in (4.30)
and (4.33) respectively, while

in the interval

ke (k24(&, A), OO) s
where kog(a, A) = mazx {ka(c, A), ky(c, A)}, also ko(a, A) and ky(a, A) are given in (4.31)
and (4.34) respectively.

Now, considering the conditions on A and k simultaneously, we may state the following
theorem:

Theorem 4: Under the alternative hypothesis, the dominance picture of the proposed estima-
tors is:

S (k) > Brp (k) > By (k).
in the interval,
(A k) € (0, Ar3(k, )] x (0, k13(a, A)],
while

W (k) > Bl (k) > BLa(k),

in the interval,
(A, k) & (Alg(k, Oé), OO) X (klg (Oé, A), OO)

5 Computed Risk Analysis

In this section we will provide some graphical representations of the proposed estimators
via calculating the M SE. Note that, for given «, the MSFE of the estimators depend on
observed data and unknown parameters k£ and A. Thus the dominance pictures of the
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estimators are data dependent. In order to avoid data dependent condition, we will consider
the orthonormal regression, X’'X = I. Furthermore, to facilitate numerical computation of
M SFE functions of the proposed estimators, we consider H'H = I, '#=1, and h = 0. Using
these restrictions in (3.17), the M SE of the proposed estimators become:

2

o
MSEw (k) = 1+ k)2 [p — G ar2n—p(11; A) + ARG 120 p (115 A) = Goran—p(ly 5 A)]

+ 2kAG o] A) + 7).

0_2

MSEpr(k) = m [p — ¢Goyon—p(IT" A) + Al2G g 2m—p (1T A) = Gram—p(l3™; A)]
+ 2kAG o (1™ A) + 7.

2

o

MSELM(k) = m[p—qu_ﬂ,n_p(

M A) + ARG 2n—p (15 A) = Goran—p (3™ A)]

+ 2kAGg (M A) + K. (5.35)

When we compare the performance of the proposed estimators based on departure parameter
A, we see that the URRFE has constant risk as it does not depend on the restriction. Thus,

for given k, GFT (k) is superior to 5T (k) if A € (0, PR
v

—r | » otherwise B (k) is superior

to BET (k) if A € (W, ) . Now, BPT(k) is superior to SEL (k) if A € (0, T +2k> :
Yy

) . It is clear that when A moves

otherwise 3T (k) is superior to BFT (k) if A € [

27¢—1+2k
71
away from H, beyond the Value — 3b_* , the risk of ﬂ T(k) becomes unbounded for any
k > 0. However, when A moves away from Hy beyond the Value 7+—, the risk of BET (k)

— -2k
becomes unbounded for any k > 0. Similarly, for given A, 57 ( ) is superior to BET(k)
if k € (0,;( —(2- —)] otherwise GF7 (k) is superior to Bfg(k) Similarly, BF7 (k) is
superior to SET (k) if k € (0, %(% —(2- i—i)] otherwise GFZ (k) is superior to 3F7T (k).
Thus it is evident that the performance of the PT'TRRFE strongly depends on the restriction
of the parameters in the model and ridge parameter k. We have plotted the M SFE functions
versus A for fixed p = 4 and ¢ = 3 and for different values of n, a and k£ and presented
them in figures 1-4. We have also plotted the M SE functions versus k for fixed p = 4 and
g = 3 and for different values of n, & and A and have presented them in figures 5-8. The
computation of the figures have been done by Splus software. From these figures we observed
that the graphical analysis support the findings of the paper.
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Figure 1. Risk function of the PTTRRE based on the W, LR and LM tests for different

significance levels and fixed k.

n=20, alpha=0.05, k=0.20 n=20, alpha=0.10, k=0.20

3 i -
: j
-
. .
o 5 10 15 20 o 5 10 15 20
Delta Delta
n=20, alpha=0.15, k=0.20 n=20, alpha=0.20, k=0.20
. .
.
-
N /
2 i RN
WA
7 — e
s
. i
. i
o 5 10 15 20 o 5 10 15 20
Delta Delta

Figure 2. Risk function of the PITRRE based on the W, LR and LM tests for different

significance levels and fized k.
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Figure 8. Risk function of the PTRRE based on the W, LR and LM tests for different

significance levels and fixed k.
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Figure 4. Risk function of the PIRRE based on the W, LR and LM tests for different

significance levels and fized k.
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Figure 5. Risk function of the PTRRE based on the W, LR and LM tests for different

significance levels and fized delta.
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Figure 6. Risk function of the PITRRE based on the W, LR and LM tests for different

significance levels and fized delta.
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Figure 7. Risk function of the PTRRE based on the W, LR and LM tests for different

significance levels and fized delta.
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Figure 8. Risk function of the PI'RRE based on the W, LR and LM tests for different

significance levels and fized delta.
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6 Relative Efficiency and Optimum Significance Level

In this section, we describe the relative efficiency of the proposed estimators for 3. Accord-
ingly, we provide maximum and minimum (Max & Min) rule for the optimum choice of the
level of significance of the PT RRE for testing the null hypothesis (1.2). For a fixed value of

k(> 0), the relative efficiency of the PTRRE (3F"(k)) compared to the URRE (3VE(k)) is
a function of a;, and A. Let us denote this by

. MSEUR(]C) . -1
E(k, o, A) = ASE. () = [1 = h(k,a,A)] (6.36)
where
gk, o, A)
h(k A) = .
(o0 8) = oW Twny + OB (6:37)
and
gk, a, A) = *tr(WAW)Gyrom (I} A)
77,WIW77{2GQ+2,n7p(lT§ A) - Gq+4,nfp(l;3 A)}
Gy oy (I A WIC (BB, (6.38)

For a given n, p, ¢ and k, E(k,a, A), is a function of o and A. For a # 0, it has maximum
at A = 0 with value

o2t (WAW')G gram—p (155 0) ] !

Einac (, 0,0) = ll (WO W) + 2F'C2 (k)

As A increases from 0, E(k,«,A) decreases and crossing the line E(k,a,A) = 1 to a
minimum E(k, o, A%) at A = A° then increases towards 1 as A — oo. For A = 0 and

varying «, we obtain,

o?tr(WAW') -1
— O_Qtr(Wc—IW/) + kQBIO_Q(k)/B} .

maivggaglE(k, a, 0) = E(k, 0, 0) = |:1 (639)

The value E(k, «,0) decreases as « increases. On the other hand, for o # 0, as A varies the
graphs of E(k,0,A) and E(k,1,A) intersect in the range 0 < A < A;(k,0), where

WAW') — 2ko2nfW'C~ (k)
Clioman (WWCT) !

Ay (k,0) = tr(

and Chyq, (W'WC™) is the latgest characteritic root of the matrix (W'WC™'). Also for
k =0, E(0,0,A) intersect at A = q. For a general o, E(0,0,A) and F(0,1, A) will intersect
in the interval 0 < A < ¢; the value of A decrease at the intersection decreases as « increase.

17



Thus in order to choose an estimator with optimum relative efficiency, we adopt the following
rule for given k values. If 0 < A < Ay (k,0), BE7(k) is chosen since E(k, 0, A) is largest in this
interval. However, in general A is unknown and may not lie in the interval and there is no way
of choosing a uniformly best estimator. In such case we pre-assign a value of the efficiency
E°(k) (minimum guaranteed efficiency) and consider the set A = {a|E(k, a,A) > Eo(k)}
and choose an estimator which maximizes E(k,«, A) for all « € A and A € [0,00). Thus

we solve the following equation

mazqeamina E(k, o, A) = E°(k). (6.40)
The solution a* for (6.40) gives the optimum choice of @ and the value of A = A,,;,,(k) for
which (6.40) is satisfied. At the same time these values (a*, A, (k)) yield the corresponding
value of optimum k£, which can be estimated from the following equation.
min; 025G an—p(15; A) = A2 {2Gg42n-p(15; A) = Ggran—p(li5 A)}]

mazx; [277;aqu+2,n—p(lT; A)] .

The above equation is obtained from the difference of M SEyr(k)(URRE) and M SE, (k)
(PTRRE) and based on the smaller M SFE criterion.

(o, A) =

Thus for each estimator we can find the optimum significance level say o), al®, o™ respec-

) Tk ) Tk
w w LR LM)
*

tively, with minimum guaranteed efficiency E°(k). Then, we choose o) = min(a), alf of

as optimum level of significance since o)V < af® < o™, Note that our main goal is to choose
the smallest level of significance («) which gives the best estimator in the sense of having
highest efficiency. Imposing the restrictions as, X'X = I, H'H = I, and '8 = 1, in e-
quation (6.36), we obtain the maximum and minimum (Max & Min) guranteed efficency
of the proposed estimators compared to URRE (for k = 0, we obtain URLSFE). Tables 1
through 3 provide the value of the maximum and minimum guaranteed relative efficiency
and recommended corresponding size of a of the proposed estimators for p = 4, ¢ = 3 and
n = 10,15, 20,30, and £ = 0.10,0.50,0.75. Also Tables 4 and 5 provide the value of the
maximum and minimum guaranteed relative efficiency of PT'RRFE compared to URLSFE for
p =4, q=3and n = 10,15, 20,30, and £ = 0.10,0.75. We found that for all A and &,
the PTTRRESs are more efficient compared to URLSE than URRE. How can one use the
table? For example, if n = 20, p = 4, k£ = 0.10, and the experimenter wishes to have an
estimator with a minimum guaranteed efficiency of 0.75. Now using Table 1, we recommend
him/her to select o = 0.05, corresponding to B{{,T(k), because such a choice of a would
yield an estimator with a minimum efficiency of 0.75077 and maximum efficiency 1.99859.
The corresponding minimum and maximum relative efficient of the PT'TRRE compared to
URLSE are 0.90616 and 2.41226 respectively. It is interesting to note that v = 0.05 is the
traditional level of significance used by Sir R. A. Fisher, the founder of classical statistics.
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7 Summary and Concluding Remarks

In this paper we studied the effect of three tests, W, LR and LM on the performance of
the PI'RRFE for the regression parameters when there exist a uncertain prior information
in the parameter space. In literature, it is known that W < LR < LM. Thus there may
exists conflict in the resulting test conclusions when certain critical value is chosen. We
have effectively determined some conditions on A, the departure parameter and k, the ridge
parameter for the superiority of the proposed estimators. Note that the superiority of the
proposed estimators depend on data and the information about the hypothesis. We have
also discussed the method of choosing optimum level of significance to obtain mimimum
guaranteed efficient estimators. The PT'RRE based on Wald test is found to be the most
efficient in the choice of the smallest level of significance. The most interesting result of the
paper is the optimum choice of the level of significance becomes the traditional choice by

using W test.
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Table 1: Max & Min Guaranteed Efficiency of PTRRE compared to URRE (k = 0.10)

n=10

Test a: 5% 10% 15% 20% 25% 30% 50%
W | Max | 1.56396 1.40452 1.31381 1.25158 1.20502 1.16843 1.07581
Min | 0.82649 0.86469 0.88679 0.90944 0.93083 0.95489 0.97830
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
LR | Max | 1.98363 1.65488 1.48185 1.37054 1.29167 1.23250 1.09514
Min | 0.67904 0.77332 0.82801 0.86937 0.90494 0.94102 0.97308
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
LM | Max | 3.43551 2.43850 1.93330 1.65251 1.47724 1.35867 1.12509
Min | 0.38030 0.57241 0.70822 0.79240 0.85876 0.91848 0.96534
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
n=15

W | Max | 1.83172 1.58811 1.45108 1.35828 1.28972 1.23641 1.10432
Min | 0.77656 0.82432 0.85274 0.88165 0.90924 0.94060 0.97102
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
LR | Max | 2.21955 1.82231 1.60781 1.46859 1.36954 1.29508 1.12168
Min | 0.66690 0.75466 0.80712 0.85000 0.88849 0.92932 0.96659
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
LM | Max | 3.02054 2.29117 1.89905 1.65995 1.50006 1.38623 1.14484
Min | 0.48927 0.64030 0.73644 0.80272 0.85881 0.91407 0.96089
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
n=20

W | Max | 1.99859  1.7017 1.53497 1.42272 1.34030 1.27661 1.12065
Min | 0.75077  0.8032 0.83485 0.86694 0.89775 0.93294 0.96704
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
LR | Max | 2.33411 1.90680 1.67227 1.51912 1.40984 1.32755 1.13557
Min | 0.66479 0.74801 0.79844 0.84148 0.88093 0.92374 0.96335
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
LM | Max | 2.89281 2.24537 1.88835 1.66382 1.50993 1.39823 1.15406
Min | 0.54084 0.66865 0.74842 0.80742 0.85913 0.91229 0.95891
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
n=30

W | Max | 2.19088 1.83293 1.63124 1.49606 1.39742 1.32167 1.13854
Min | 0.72458 0.78156 0.81647 0.85175 0.88583 0.92497 0.96283
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
LR | Max | 2.44533 1.99128 1.73747 1.57050 1.45095 1.36076 1.14985
Min | 0.66497 0.74294 0.79081 0.83368 0.87381 0.91835 0.96012
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
LM | Max | 2.79492 2.20990 1.88024 1.66770 1.51903 1.40929 1.16290
Min | 0.58870 0.69398 0.75931 0.81187 0.85960 0.91073 0.95706
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000

22



Table 2: Max & Min Guaranteed Efficiency of PTRRE compared to URRE (k = 0.50)

n=10

Test a: 5% 10% 15% 20% 25% 30% 50%
W | Max | 1.51569 1.37315 1.29093 1.23405 1.19123 1.15742 1.07123
Min | 0.75944 0.80801 0.83390 0.86286 0.88943 0.91867 0.96227
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
LR | Max | 1.87925 1.59587 1.44259 1.34245 1.27074 1.21653 1.08929
Min | 0.57544 0.68602 0.75029 0.80263 0.84724 0.89175 0.95275
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
LM | Max | 3.02014 2.25530 1.83651 1.59378 1.43847 1.33169 1.11720
Min | 0.26502 0.44629 0.58958 0.69012 0.77198 0.84620 0.93841
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
n=15

W | Max | 1.74955 1.53706 1.41503 1.33135 1.26895 1.22012 1.09785
Min | 0.69733 0.75549 0.78755 0.82333 0.85667 0.89384 (.94988
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
LR | Max | 2.07654 1.74144 1.55445 1.43073 1.34155 1.27385 1.11402
Min | 0.56453 0.66521 0.72454 0.77702 0.82362 0.87234 0.94190
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
LM | Max | 2.71119 2.13546 1.80729 1.60031 1.45887 1.35664 1.13556
Min | 0.37245 0.52682 0.63051 0.70918 0.77649 0.84260 0.93153
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
n=20

W | Max | 1.89190 1.63684 1.48996 1.38955 1.31503 1.25697 1.11307
Min | 0.66637 0.72880 0.76383 0.80287 0.83954 0.88072 0.94316
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
LR | Max | 2.17058 1.81391 1.61111 1.47585 1.37795 1.30344 1.12694
Min | 0.56361 0.65827 0.71423 0.76609 0.81306 0.86334 0.93654
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
LM | Max | 2.61346 2.09784 1.79814 1.60370 1.46767 1.36747 1.14411
Min | 0.42706 0.56173 0.64797 0.71763 0.77885 0.84136 0.92853
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
n=30

W | Max | 2.05283 1.75059 1.57509 1.45530 1.36674 1.29809 1.12970
Min | 0.63567 0.70201 0.73989 0.78207 0.82201 0.86718 0.93609
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
LR | Max | 2.26080 1.88572 1.66800 1.52148 1.41492 1.33359 1.14020
Min | 0.56530 0.65330 0.70541 0.75629 0.80330 0.85480 0.93126
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
LM | Max | 2.53770 2.06856 1.79120 1.60710 1.47577 1.37746 1.15230
Min | 0.47982 0.59349 0.66385 0.72550 0.78123 0.84038 0.92579
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
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Table 3: Max & Min Guaranteed Efficiency of PTRRE compared to URRE (k = 0.75)

n=10

Test a: 5% 10% 15% 20% 25% 30% 50%
W | Max | 1.46398 1.33893 1.26571 1.21458 1.17583 1.14507 1.06603
Min | 0.73305 0.78511 0.81209 0.84325 0.87157 0.90247 0.95496
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
LR | Max | 1.77250 1.53329 1.40015 1.31168  1.2476 1.19875 1.08266
Min | 0.53845 0.65284 0.71959 0.77539  0.8229 0.87008 0.94352
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
LM | Max | 2.656305 2.07674 1.73699 1.53149 1.39653 1.30211 1.10831
Min | 0.23240 0.40524 0.54722 0.65114 0.73706 0.81542 0.92625
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
n=15

W | Max | 1.66412 1.48253 1.37592 1.30180 1.24600 1.20200 1.09054
Min | 0.66713 0.72842 0.76134 0.79932 0.83442 0.87329 0.94031
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
LR | Max | 1.93394 1.65728 1.49758 1.38973 1.31088 1.25040 1.10539
Min | 0.52818 0.63162 0.69242 0.74770 0.79667 0.84764 0.93076
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
LM | Max | 2.42676 1.98137 1.71260 1.53711 1.41441 1.32429 1.12511
Min | 0.33591 0.48757 0.59156 0.67307 0.74327 0.81226 0.91835
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
n=20

W | Max | 1.78298 1.56842 1.44158 1.35344 1.28725 1.23523 1.10452
Min | 0.63471 0.69995 0.73564 0.77679 0.81517 0.85798 0.93239
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
LR | Max | 2.00947 1.71813 1.54638 1.42927 1.34318 1.27690 1.11723
Min | 0.52770 0.62470 0.68168 0.73600 0.78507 0.83734 0.92450
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
LM | Max | 2.35339 1.95113 1.70494 1.54002 1.42212 1.33390 1.13293
Min | 0.38995 0.52389 0.61060 0.68279 0.74642 0.81129 0.91495
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
n=30

W | Max | 1.91475 1.66499 1.51540 1.41129 1.33325 1.27212 1.11976
Min | 0.60285 0.67159 0.70989 0.75404 0.79557 0.84226 0.92410
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
LR | Max | 2.08109 1.77787 1.59502 1.46901 1.37582 1.30380 1.12936
Min | 0.52988 0.61988 0.67257 0.72559 0.77440 0.82761 0.91835
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
LM | Max | 2.29589 1.92749 1.69912 1.54294 1.42920 1.34274 1.14040
Min | 0.44302 0.55723 0.62800 0.69183 0.74954 0.81060 0.91184
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
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Table 4: Max & Min Guaranteed Efficiency of PTRRE compared to URLSE (k = 0.10)

n=10

Test a: 5% 10% 15% 20% 25% 30% 50%
W | Max | 1.88767 1.69523 1.58575 1.51063 1.45444 1.41027 1.29849
Min | 0.99756 1.04366 1.07034 1.09768 1.12349 1.15254 1.18079
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
LR | Max | 2.39421 1.99742 1.78856 1.65422 1.55902 1.48761 1.32181
Min | 0.81958 0.93339 0.99940 1.04931 1.09225 1.13580 1.17449
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
LM | Max | 4.14660 2.94323 2.33346 1.99455 1.78300 1.63989 1.35797
Min | 0.45902 0.69089 0.85481 0.95641 1.03651 1.10859 1.16514
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
n=15

W | Max | 2.21086 1.91682 1.75143 1.63942 1.55666 1.49232 1.33289
Min | 0.93729 0.99494 1.02924 1.06414 1.09744 1.13529 1.17200
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
LR | Max | 2.67895 2.19950 1.94060 1.77256 1.65301 1.56313 1.35385
Min | 0.80494 0.91086 0.97419 1.02594 1.07239 1.12167 1.16666
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
LM | Max | 3.64574 2.76540 2.29212 2.00353 1.81055 1.67315 1.38181
Min | 0.59054 0.77284 0.88887 0.96886 1.03656 1.10327 1.15978
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
n=20

W | Max | 2.41226 2.05392 1.85268 1.71719 1.61771 1.54084 1.35261
Min | 0.90616 0.96945 1.00765 1.04639 1.08357 1.12605 1.16720
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
LR | Max | 2.81723 2.30147 2.01841 1.83355 1.70165 1.60233 1.37061
Min | 0.80239 0.90284 0.96370 1.01565 1.06327 1.11494 1.16274
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
LM | Max | 3.49157 2.71013 2.27920 2.00820 1.82246 1.68763 1.39294
Min | 0.65278 0.80705 0.90332 0.97454 1.03696 1.10112 1.15738
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
n=30

W | Max | 2.64435 2.21232 1.96888 1.80572 1.68666 1.59523 1.37420
Min | 0.87455 0.94333 0.98547 1.02805 1.06918 1.11642 1.16211
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
LR | Max | 2.95147 2.40344 2.09709 1.89557 1.75127 1.64241 1.38785
Min | 0.80260 0.89672 0.95450 1.00624 1.05467 1.10843 1.15885
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
LM | Max | 3.37342 2.66731 2.26941 2.01289 1.83344 1.70099 1.40360
Min | 0.71055 0.83763 0.91647 0.97991 1.03752 1.09923 1.15515
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
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Table 5: Max & Min Guaranteed Efficiency of PTRRE compared to URLSE (k = 0.75)

n=10

Test a: 5% 10% 15% 20% 25% 30% 50%
W | Max | 3.93068 3.59493 3.39835 3.26105 3.15703 3.07444 2.86221
Min | 1.96818 2.10797 2.18041 2.26406 2.34011 2.42308 2.56401
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
LR | Max | 4.75905 4.11678 3.75930 3.52178 3.34973 3.21856 2.90688
Min | 1.44571 1.75283 1.93204 2.08187 2.20943 2.33612 2.53328
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
LM | Max | 7.12325 5.57590 4.66369 4.11196 3.74959 3.49608 2.97572
Min | 0.62398 1.08804 1.46925 1.74827 1.97895 2.18934 2.48692
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
n=15

W | Max | 4.46804 3.98049 3.69425 3.49525 3.34543 3.22728 2.92802
Min | 1.79120 1.95576 2.04415 2.14611 2.24037 2.34472 2.52467
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
LR | Max | 5.19249 4.44968 4.02090 3.73132 3.51962 3.35723 2.96790
Min | 1.41814 1.69586 1.85911 2.00751 2.13900 2.27587 2.49902
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
LM | Max | 6.51569 5.31984  4.5982 4.12703 3.79760 3.55563 3.02084
Min | 0.90189 1.30909  1.5883 1.80714 1.99563 2.18087 2.46571
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
n=20

W | Max | 4.78718 4.21111 3.87054 3.63388 3.45618 3.31651 2.96555
Min | 1.70416 1.87932 1.97514 2.08564 2.18866 2.30361 2.50342
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
LR | Max | 5.39528 4.61306 4.15193 3.83749 3.60634 3.42840 2.99968
Min | 1.41684 1.67728 1.83026 1.97611 2.10785 2.24819 2.48223
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
LM | Max | 6.31868 5.23864 4.57765 4.13486 3.81829 3.58143 3.04183
Min | 1.04699 1.40661 1.63943 1.83324 2.00408 2.17825 2.45657
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
n=30

W | Max | 5.14098 4.47040 4.06875 3.78920 3.57969 3.41555 3.00647
Min | 1.61862 1.80316 1.90601 2.02454 2.13604 2.26142 2.48113
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
LR | Max | b5.587568 4.77345 4.28253 3.94420 3.69398 3.50061 3.03225
Min | 1.42270 1.66432 1.80581 1.94815 2.07921 2.22209 2.46571
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
LM | Max | 6.16431 5.17518 4.56203 4.14270 3.83730 3.60517 3.06191
Min | 1.18948 1.49613 1.68613 1.85753 2.01246 2.17640 2.44823
A | 10.00000 8.00000 6.00000 5.00000 4.00000 3.00000 3.00000
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